Protein Evolution: Difference between revisions

From MDWiki
Jump to navigationJump to search
No edit summary
No edit summary
 
(19 intermediate revisions by the same user not shown)
Line 8: Line 8:


'''SUMMARY'''
'''SUMMARY'''
08/05/2007


The protein sequence was transformed into FASTA format
The protein sequence was transformed into FASTA format
Line 26: Line 28:


[[Image:Ids.txt]]
[[Image:Ids.txt]]
File that shows protein results
[[Image:Protein-results.txt]]




Line 34: Line 41:
''Phylogenetic Tree''
''Phylogenetic Tree''


The first step was to perform a distance matrix calculation on the sequences. This was done by using the Phylip program on the CD. Because the program only scans the first ten characters of the Id numbers of the sequences, several sequences had to be change because they appeared to be the same. These sequences wer sequences 21 & 22, 23 & 24, 32 & 33, 39 & 40 & 41, and to be on the safe side 42 & 43 need to be changed also.
The first step was to perform a distance matrix calculation on the sequences. This was done by using the Phylip program on the CD. Because the program only scans the first ten characters of the Id numbers of the sequences, several sequences had to be change because they appeared to be the same. These sequences were sequences 21 & 22, 23 & 24, 32 & 33, 39 & 40 & 41 & 47, and to be on the safe side 42 & 43 need to be changed also.
 
 
22/05/2007
 
Original sequences and change to the sequences
 
21 - gi|114673074
   
22 - gi|114673072 
 
21 - kept the same
 
22 - changed to gi|1146jpe 
 
 
23 - gi|109122125
 
24 - gi|109122123 
 
23 - kept the same
 
24 - changed to gi|1091jpe
 
 
32 - gi|123258675 
   
33 - gi|123258677
 
32 - kept the same
 
33 - changed to gi|1232jpe   
 
 
39 - gi|119609670     
 
40 - gi|119609672     
 
41 - gi|119609671 
 
47 - gi|119609669
 
39 - kept the same
 
40 - changed to gi|1196jpe
 
41 - changed to gi|1196epj
 
47 - changed to gi|1196pje
 
 
 
42 - gi|73964908       
 
43 - gi|73964910       
 
42 - kept the same
 
43 - changed to gi|7396jpe
 
 
Redid the distance matrix calculation with the newly changed sequences. This produced a file of the calculations which was called outputsequences.phy. (I can't upload .phy files onto the page)
 
The first tree constructed was done using the neighbour-joining method. The output file was named neighbourjoiningspeciessequences.phy and the other output file that was produced from this method was called treealignment.ph The neighbour joining file was converted to a text file.
 
File that shows the neighbour joining method which produced an unrooted tree
 
[[Image:neighbourjoiningspeciessequences.txt]]
 
 
This data was used to convert the tree into an image by using the Phylip program.
 
(Still unable to upload phylogenetic tree, it is a work in progress)
 
 
When the tree was completed, bootstrapping of the tree was the next task undertaken. This was done by following the instructions on the Methods section and using the Phylogenetic tree instructions. Part A bootstrapped the sequences 100 times. Part B was producing the bootstrap distance matrices. Step C was taking this file of bootstrap values and creating a tree alingment with these values using the programme neighbor.
 
Finally, have been able to upload two tree diagrams that are slightly different, one has the bootstrap values
 
[[Image:Bootstrap_Tree_Alignment.jpg]]
 
 
[[Image:Tree_Alignment.jpg]]


Had trouble accessing my Homes file on Friday, where I was going to change th ID numbers. Will try on on Monday and download the information onto my USB so I can work on the tree at home.
Access to [[Scientific Report]]

Latest revision as of 04:59, 5 June 2007

Conservation of MIF4GD in Eutheria (Placental Mammals)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=homologene&dopt=HomoloGene&list_uids=41389


Conservation of the protein structure in many organisms, including Pan troglodytes (chimpanzee), Mus musculus (house mouse), Rattus norvegicus (brown rat), Bos taurus (domestic cow) and Danio rerio (zebrafish).


SUMMARY

08/05/2007

The protein sequence was transformed into FASTA format

File:FASTA2.txt

Using Command Prompt and the CD, BLASTed the protein sequence. First used a vertebrate_other database (which produced only 12 significant results), before was finally able to access the nonredundant database with 57 homologous matching sequences and several different species including Homo sapiens, Danio rerio (zebra fish),Mus musculus (house mouse), Bos taurus (domesticate cow), Xenopus tropicalis (pipid frog), Rattus norvegicus (brown rat), Xenopus laevis (African clawed frog), Canis familiaris (domesticate dog), Pan troglodytes (chimpanzee), Drosophila melangaster (fruit fly), Drosophila pseudoobscura, Aedes aegypti (mosquito) and Tetraodon nigroviridis (green spotted pufferfish).

The protein seems to be conserved throughout the animal kingdom. Must have a quite important function. Hopefully when the phylogenetic tree is constructed, will get more insight into the evolution of MIF46 domain containing protein.


File that shows the significant sequences obtained from the non-redundant database.

File:Sequences.txt


File that shows the id numbers of the significant sequences found from the non-redundant database.

File:Ids.txt


File that shows protein results

File:Protein-results.txt


15/5/2007

Used the program ClustalX to perform a multiple alignment sequence on the 55 Id numbers (1 sequence had no Id number and 1 Id number could not be read.) When the sequences were uploaded into the ClustalX programme, performed a full alignment on the sequences. Are ready to now construct a phylogenetic tree for our protein.

Phylogenetic Tree

The first step was to perform a distance matrix calculation on the sequences. This was done by using the Phylip program on the CD. Because the program only scans the first ten characters of the Id numbers of the sequences, several sequences had to be change because they appeared to be the same. These sequences were sequences 21 & 22, 23 & 24, 32 & 33, 39 & 40 & 41 & 47, and to be on the safe side 42 & 43 need to be changed also.


22/05/2007

Original sequences and change to the sequences

21 - gi|114673074

22 - gi|114673072

21 - kept the same

22 - changed to gi|1146jpe


23 - gi|109122125

24 - gi|109122123

23 - kept the same

24 - changed to gi|1091jpe


32 - gi|123258675

33 - gi|123258677

32 - kept the same

33 - changed to gi|1232jpe


39 - gi|119609670

40 - gi|119609672

41 - gi|119609671

47 - gi|119609669

39 - kept the same

40 - changed to gi|1196jpe

41 - changed to gi|1196epj

47 - changed to gi|1196pje


42 - gi|73964908

43 - gi|73964910

42 - kept the same

43 - changed to gi|7396jpe


Redid the distance matrix calculation with the newly changed sequences. This produced a file of the calculations which was called outputsequences.phy. (I can't upload .phy files onto the page)

The first tree constructed was done using the neighbour-joining method. The output file was named neighbourjoiningspeciessequences.phy and the other output file that was produced from this method was called treealignment.ph The neighbour joining file was converted to a text file.

File that shows the neighbour joining method which produced an unrooted tree

File:Neighbourjoiningspeciessequences.txt


This data was used to convert the tree into an image by using the Phylip program.

(Still unable to upload phylogenetic tree, it is a work in progress)


When the tree was completed, bootstrapping of the tree was the next task undertaken. This was done by following the instructions on the Methods section and using the Phylogenetic tree instructions. Part A bootstrapped the sequences 100 times. Part B was producing the bootstrap distance matrices. Step C was taking this file of bootstrap values and creating a tree alingment with these values using the programme neighbor.

Finally, have been able to upload two tree diagrams that are slightly different, one has the bootstrap values

Bootstrap Tree Alignment.jpg


Tree Alignment.jpg

Access to Scientific Report