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Heiko Schäfer,1 Lorna J. Smith,2 Alan E. Mark,3 and Wilfred F. van Gunsteren1*
1Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH Zentrum, Zurich, Switzerland
2Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, Oxford, England
3Laboratory of Biophysical Chemistry, University of Groningen, Groningen, The Netherlands

ABSTRACT We present entropy estimates
based on molecular dynamics simulations of models
of the molten globule state of the protein a-lactalbu-
min at low pH. The entropy calculations use the
covariance matrix of atom-positional fluctuations
and yield the complete configurational entropy. The
configurational entropy of the entire protein and of
each of its side chains is calculated. Exposed side
chains show a larger entropy compared to buried
side chains. A comparison to data from rotamer
counting is made and significant differences are
found. Proteins 2002;46:215–224.
© 2001 Wiley-Liss, Inc.

INTRODUCTION

Apart from the native state of a protein and the random
coil, the molten globule state has been the focus of much
interest.1–3 The molten globule state is compact and
retains a great part of secondary structure while the side
chains are disordered. It is believed that the examination
of the molten globule might give new insights into protein
folding pathways.2

Recently Smith et al.4 tried to model the molten globule
state of human a-lactalbumin at low pH using molecular
dynamics (MD) simulations. The interconversion between
the native state of a-lactalbumin and the molten globule is
estimated to be in the order of seconds, which is beyond the
time scale accessible by MD simulations. The molten
globule state was, therefore, modelled by simulating differ-
ent conformers of the molten globule. These conformers
were generated by disordering the side chains in four
different ways.

In the present work, the configurational entropy of two
of the conformers of the molten globule are estimated and
compared. A formula for the estimation of the entropy
introduced by Schlitter,5 which was recently tested and
applied to MD trajectories of a b-heptapeptide in metha-
nol,6,7 is used.

METHODS

The system considered in this work was previously
described in detail by Smith et al.4,8 It consists of 4
different simulations of a-lactalbumin in water at pH 5 2,
under which conditions a-lactalbumin is known experimen-
tally to form a molten globule state.3 In order to reproduce
the low pH conditions, the calcium ion was removed and
the aspartate, glutamate, and histidine side chains and

the carboxy terminus were protonated. Starting from the
crystal structure of human a-lactalbumin determined at
pH 5 6.5,9 the protein and 5,582 water molecules were
equilibrated for 100 ps at pH 5 2. At this point, the
simulations labeled R1 and R4 in Smith et al.,4 which
differ in their treatment of the side chains, were branched
off. In simulation R1, the side chain positions were left
unchanged. In R4, all x1 torsion angles were changed; for
residues with a x1 torsion angle of 260° (630°), the x1

angle was set to 60°, while for all other residues x1 was set
to 260°. The torsion angles of cysteine and proline resi-
dues were excluded, as were those of Phe-31, Trp-60, and
His-107 as rotation of the side chains of these residues
resulted in the side chains of Lys-5, Ser-56, and Trp-104,
respectively, going through the aromatic ring concerned.4

Both systems simulations were then extended for 2 ns. The
R1 and R4 simulations represent two possible conformers
of the molten globule state of a-lactalbumin, not the
molten globule itself.

In order to estimate the side-chain configurational en-
tropy Scf of a-lactalbumin, a heuristic formula introduced
by Schlitter5 is used. Schlitter’s formula approximates the
absolute entropy S,

S , S9 5
1
2 kB ln detF1 1

kBTe2

\2 MsG , (1)

where kB is Boltzmann’s constant, T is the absolute
temperature, e Euler’s number, \ is Planck’s constant
divided by 2 p, M is the mass matrix that holds the masses
belonging to the atomic Cartesian degrees of freedom of
the molecule or part of the molecule (side chain) considered
on the diagonal and has all off-diagonal elements zero, and
s is the covariance matrix of atom-positional fluctuations
with the elements

sij 5 ^~xi 2 ^xi&!~xj 2 ^xj&!&. (2)

Here xi are the Cartesian coordinates. The entropy S9
calculated using eq. 1 was shown by Schlitter to be an
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upper limit to the correct entropy S. Schlitter’s formula
was extensively tested5,6 and was shown to give results
with errors around 5% for condensed phase systems.

In order to estimate entropies from MD trajectories
using eq. 1, it is necessary to calculate the covariance
matrix s. This is done directly from the atom Cartesian
coordinates xi and thus includes the overall rotation and
translation of the protein. On the time scales reachable by
MD simulations of proteins in solution, one cannot hope for
sufficient sampling of the overall rotation and translation
of the protein. In order to remove these slowly converging
degrees of freedom from the calculations, a geometrical
(translational and rotational) least-squares fit was used.
This implies that the configurational entropy, instead of
the absolute entropy, is calculated. Different sets of atoms
were used in the least-squares fit: (1) all main chain
backbone atoms (N, C, Ca) denoted the symbol bb; (2) main
chain backbone atoms only in the three helical regions of
a-lactalbumin (residues 5–11, 24–33, and 86–98) that are
stable in the R1 and R4 simulations, denoted by the
symbol 2nd; (3) when the entropy per residue is calculated
an individual fit on the N, C, Ca of each residue denoted by
the symbol fir is performed.

The MD simulations for a-lactalbumin explicitly in-
cluded water as the solvent.4,8 In order to calculate the
configurational entropy of the protein, the configurations
are fitted using a least-squares fit and only the coordinates
of the protein atoms are used in the calculation of the
covariance matrix s. The entropy of the solvent and the
correlation between the solvent and protein degrees of
freedom are thus ignored.

Generally an arbitrary set of atom coordinates can be
used in the calculation of s. However, when using subsets
of the degrees of freedom of a system in the entropy
calculation, one has to be aware that the entropy is, in
principle, a nonadditive quantity. By decomposing the
total entropy into parts, one is ignoring the correlation
between the parts. As an example, for the calculation of
the entropy per residue (see below) a separate covariance
matrix for each residue is used. Any correlation between
the residues is, therefore, ignored and the entropies per
residue do not add up to the configurational entropy of the
entire protein. The sum of the configurational entropies of
all residues is larger than the total configurational entropy
of the protein, because of the neglect of correlations that
lower the entropy.

The off-diagonal elements of the covariance matrix s
stem from the correlation between the degrees of freedom
considered in the entropy calculation. By using only the
diagonal elements of s, it is possible to ignore all correla-
tions and thereby calculate the uncorrelated entropy. The
difference between the uncorrelated entropy and the en-
tropy calculated using all elements of s, gives the decrease
in entropy because of correlation between the degrees of
freedom used in the calculation.

RESULTS
Configurational Entropy of a-Lactalbumin

The configurational entropy of the protein was calcu-
lated using eq. 1. Each configuration was geometrically

fitted to the starting configuration of both the R1 and R4
simulations using a least-squares fit. Two different sets of
atoms were used in the least-squares fit, as described
above. The results are summarised in Table I and the
configurational entropy as a function of simulation time is
shown in Figure 1.

The effect of using different sets of atoms in the least-
squares fit is minimal. Using secondary structure ele-
ments (less atoms in the fit) gives a slightly larger entropy
than using all backbone atoms. The configurational en-
tropy is certainly not converged after 2 ns and is still
increasing at this time point. As could be expected, the R4
simulation where the side-chains were maximally disor-
dered, has a greater entropy compared to the R1 simula-
tion, where the side-chain conformations were not changed
from native.

The atoms in the protein were split into two subgroups,
the backbone atoms and the side-chain atoms. For these
subsets the entropies were calculated using the same
procedure as described above. Table I shows the results
and Figure 2 the convergence of the entropies. The configu-
rational entropy of the backbone converges more rapidly
than that of the side chains. The ordering between the R1
and R4 simulations, i.e., R4 showing a larger entropy, is
retained in the backbone and the side chain results. The
side chains have a greater configurational entropy than

TABLE I. Configurational Entropy Scf of a-lactalbumin at
pH 5 2 Calculated From the 2-ns R1 Simulation, Which

Started From the Native Structure, and From the 2-ns R4
Simulation, Which Started With Almost All Side-Chain x1

Angles Changed by 120°†

R1 (low pH)

R4
(maximal
disorder)

D (R4 2
R1)

Configurational entropy
Scf

bb (backbone fit) 27,545 28,270 725
(Uncorrelated) 80,660 83,356 2,696
Scf

2nd (2nd struct. fit) 27,603 28,319 716
(Uncorrelated) 81,544 84,926 3,382

Backbone entropy
Sbb

bb (backbone fit) 11,719 12,165 446
(Uncorrelated) 36,361 37,221 860
Sbb

2nd (2nd struct. fit) 11,764 12,206 442
(Uncorrelated) 36,886 38,075 1,189

Side-chain entropy
Ssc

bb (backbone fit) 19,265 19,691 427
(Uncorrelated) 44,300 46,250 1,950
Ssc

2nd (2nd struct. fit) 19,294 19,720 426
(Uncorrelated) 44,724 46,876 2,152

Backbone/side chain
correlation
DSbb/sc

bb 3,439 3,586 147
DSbb/sc

2nd 3,455 3,607 152
†Two sets of atoms were used in the least-squares fit: all main-chain
backbone atoms (bb) and only main-chain atoms inside secondary
structure (2nd). The results of ignoring all correlations are indicated by
uncorrelated. The configurational entropy of the backbone Sbb, side
chains Ssc, and the decrease in entropy DSbb/sc because of the correla-
tion between backbone and side chains are also given. All values are in
J K21 mol21.
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the backbone. The effect of using different sets of atoms in
the least-squares fit is again minimal (see Table I).

Using only the diagonal elements of the covariance
matrix, correlations between the degrees of freedom are
ignored and a much larger value of the entropy is obtained

(see Table I). The difference between the value obtained
using the diagonal elements only and using the full
covariance is due to the correlation between the atoms.
Considering first the configurational entropy of the entire
protein, it can be seen that the uncorrelated value is

Fig. 1. Configurational entropy of the simulation R1, which started from the native structure, and of the
simulation R4, which has maximally disordered side-chain conformations. Two different sets of atoms were
used in the least-squares fit, backbone atoms (bb) and backbone atoms in regions of secondary structure
(2nd).

Fig. 2. Configurational entropy of the backbone and side-chain subsets for the R1 and R4 simulations. A
least-squares fit on the backbone atoms was used to remove overall translation and rotation of the protein.
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roughly three times larger than the configurational en-
tropy including all correlations. The same is true for the
backbone entropy (slightly above three times). The side
chains, however, show a smaller decrease of the entropy
due to correlation; the uncorrelated value is only 2.3 times
the configurational entropy.

The correlation within the backbone, within the side
chains and within the entire protein has been discussed.
The correlation between the backbone and the side chains
is also of interest. This can be obtained by taking the
difference between the sum of the backbone and the side
chain entropies Sbb 1 Ssc, and the configurational entropy
of the entire protein Scf. While Scf contains all correlations
between the backbone and the side chain atoms, the values
calculated using only either subsets do not. The difference
therefore gives the decrease in entropy due to these
correlations:

DSbb/sc 5 Sbb 1 Ssc 2 Scf (3)

Values for DSbb/sc(R1) and DSbb/sc(R4) are given in Table I.
The distribution of the entropy amongst the backbone

and the side chains, and the decrease in entropy due to
correlation are presented in Table II. The side chains
dominate with over 50% of the entropy. The decrease in
entropy because of the correlations between the backbone
and the side chains is not negligible at over 10%. This
distribution can be compared to the results from a similar
calculation7 on a b-heptapeptide in solution, where the
correlation amounted to 17%, the backbone contribution to
28%, and the side-chain contribution to 55%. Even though
the two systems considered differ widely, the distribution
of the entropy over backbone and side chains is strikingly
similar.

Entropy Per Residue

By using only the atoms of a particular residue in the
calculation of the covariance matrix s and using eq. 1, the
entropy of a single residue can be estimated. This is of
particular interest as there exists a large body of literature
concerning side-chain entropies and their role in protein
folding.10–19

Again, a least-squares fit is used to remove overall
rotation and translation of the protein. Two fitting proce-
dures were used: (1) a fit using all main chain backbone
atoms and (2) a fit using only the main chain backbone
atoms of each residue. The first procedure suffers from the
fact that backbone motion will contribute to the entropy of
a residue. The second procedure, in which each residue is
fitted individually using its backbone atoms N, C, and Ca,
is therefore preferred.

The entropy per residue Sres
fir , using the individual resi-

due fits, as a function of residue number is shown in Figure
3. Figure 3 (top) shows the results for the R4 simulation
and Figure 3 (bottom) the results for the R1 simulation.
The entropies have been normalised by division through
the number of atoms in the residue to make the compari-
son easier. Even though the helical regions, which are
stable in both simulations (residues 5–11, 24–33, and
86–98), have a rather lower entropy, there is no pro-
nounced correlation between the entropy per atom of a
residue and its position in the protein structure.

The convergence of the entropy per residue has been
monitored for all residues. An illustration of the difference
in time evolution of the entropy of the residues is given in
Figure 4. The residues shown are Ala-22, Arg-70, Gln-54,
Ile-21, and Lys-108. The behaviour ranges from a low
constant entropy in the case of alanine, to the rapidly
converging high entropy of arginine (and lysine), to the
probably still not converged entropy of glutamine and
isoleucine. The residues with long side chains show a
stepwise increase in their entropy very similar to behav-
iour observed in our previous study of a folding b-heptapep-
tide.7 Each of these steps corresponds to the sampling of a
new region of configuration space. The convergence behav-
iour depends strongly on the degrees of freedom of the
residue. Alanine, for example, will converge faster than
the residues with longer side chains. There seems to be
also a correlation with the solvent accessibility of a resi-
due: the solvent accessibility as calculated using the
NACCESS program20 of the sample residues of Figure 4
are Ala-22 34%, Arg-70 79%, Gln-54 2%, Ile-21 11%, and
Lys-108 68%. The more exposed residues appear to con-
verge faster than the buried residues.

The only difference between the R1 and R4 simulations
is the treatment of the side chains at the start of the
simulations: while they were left in the native conforma-
tion for the R1 simulation, the x1 angle was maximally
disordered in the R4 simulation. The difference in the
entropy of the residues between the R4 and the R1
simulations is shown in Figure 5. The results shown by a
dashed line in Figure 5 correspond to a fit on all backbone
atoms, while for the solid line individual residue fits were
used. They differ most in the region around residue 100
where there is a larger movement of the backbone in the
R4 simulation. The values calculated using the individual
residue fit are, therefore, used for further analysis. Surpris-
ingly, there is little difference between the R1 and R4
simulations: around residue 105, the R4 simulation shows
a larger entropy, while around residue 20 this trend is
reversed.

TABLE II. Distribution of the Entropy Amongst the
Backbone, Amongst the Side Chains, and the Correlation

Between the Two

R1 simulation R4 simulation

Percentage of the
correlation

DSbb/sc
bb

Scf
bb

13 13

Percentage of the entropy
in the backbone

Sbb
bb

Sbb
bb 1 Ssc

bb

Scf
bb 2 DSbb/sc

bb

Scf
bb

33 33

Percentage of the entropy
in the side chains

Ssc
bb

Sbb
bb 1 Ssc

bb

Scf
bb 2 DSbb/sc

bb

Scf
bb

54 54
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The residues were sorted according to their type and the
entropy per residue (normalised by the number of atoms in
the residue) was averaged over all residues of that specific
type. The results are summarised in Table III. The nor-
malised entropy per residue was also averaged over all
residues and the results are given in the row labeled “All”
in Table III. The spread in the values is large with
entropies per atom ranging from 7 up to 26 J K21 mol21.

The averages are of different statistical quality as the
number of residues from a specific type varies from 14
leucines to a single arginine.

As expected, residues with a short side chain, without
side chain, or with a conformationally restricted side chain
(Ala, Gly, Cys, Pro) have a low entropy while the amino
acids with the largest entropies are Arg, Lys, Gln, and Glu,
all of which have long side chains and are polar. The

Fig. 3. Entropy per residue after an individual least-squares fit for each residue for the R1 simulation
(Sres

fir (R1)) and the R4 simulation (Sres
fir (R4)). The entropy has been divided by the number of atoms in each

residue.

Fig. 4. Convergence of the configurational entropy per atom of some sample residues from the R1
simulation using a fit on individual residues. Shown are residues Ile-21, Ala-22, Gln-54, Arg-70, and Lys-108.
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hydrophobic amino acids Ala, Gly, Ile, Leu, and Val are all
in the lower range of entropy values. The same is true for
the cysteine residues that all form disulfide bridges.

The two simulations R1 and R4 show no significant
difference in the entropy per residue. The most striking
difference is observed for alanine where the starting
structure was the same for R1 and R4 (there is no x1 angle
in alanine). The difference can be traced back to two
alanines (Ala-106, Ala-109) that show a markedly higher
entropy in the R4 simulation. In the region of residues 100
to 110, the backbone shows a large motion in the R4
simulation and the higher entropy of the two alanines can
be explained by larger backbone fluctuations.

As already pointed out above, polar residues generally
show a larger entropy. The residues were, therefore,
ordered according to their solvent accessibility calculated
using the NACCESS program.20 Residues were assigned

to 10 bins ranging from 5 to 95% accessibility and the
average entropy for these residues was calculated. The
results for the R1 and R4 simulations are shown in Table
IV. Again, the statistical accuracy differs widely with only
three residues in the class of 75% accessibility while 36
residues fall into the 5% class.

The entropy generally increases with increasing solvent
accessibility. This can also be seen in Figure 6 where
a-lactalbumin is shown with the residues coloured accord-
ing to their entropy: the scale ranges from blue for low
entropy values to red for high entropies. Obviously, resi-
dues on the outside of the protein are higher in entropy
than buried residues. From Table IV it can be seen that
there is a peak in the entropy per residue at an accessibil-
ity of 75%. The three residues in this class are Glu-43,
Arg-70, and Lys-122. The latter two are the top-ranking
residues in entropy terms and the peak may be an effect of

Fig. 5. The difference in entropy after an individual fit for each residue and after a backbone fit between the
R4 and the R1 simulations: DS(R4 2 R1) 5 Sres

fir (R4) 2 Sres
fir (R1).

TABLE III. Entropy Sres
fir Per Residue Type After an Individual Residue Fit†

Amino acid
Number of
residues

R1 sim. Sres
fir

(J K21 mol21)
R4 sim. Sres

fir

(J K21 mol21) Amino acid
Number of
residues

R1 sim. Sres
fir

(J K21 mol21)
R4 sim. Sres

fir

(J K21 mol21)

Ala 5 6.8 6 1.3 9.4 6 2.9 Leu 14 14.6 6 2.7 16.2 6 3.4
Arg 1 25.9 6 0.0 26.0 6 0.0 Lys 12 25.8 6 2.8 25.9 6 3.2
Asn 3 17.6 6 3.3 19.1 6 3.7 Met 2 17.1 6 3.0 17.7 6 2.5
Asp 13 18.6 6 3.2 18.8 6 2.0 Phe 4 17.3 6 1.6 17.1 6 1.8
Cys 8 9.5 6 1.9 10.3 6 1.5 Pro 2 10.9 6 0.9 10.5 6 0.6
Gln 7 23.2 6 2.6 23.6 6 1.8 Ser 7 13.8 6 2.1 14.3 6 1.8
Glu 8 21.9 6 3.1 22.2 6 2.6 Thr 8 12.6 6 1.9 13.3 6 1.6
Gly 6 11.9 6 1.9 11.5 6 1.3 Trp 3 14.3 6 0.2 15.7 6 3.0
His 2 14.4 6 1.6 17.2 6 2.5 Tyr 4 18.7 6 2.4 19.0 6 3.1
Ile 12 13.5 6 2.7 13.8 6 2.5 Val 2 10.8 6 0.5 11.3 6 0.2

All 123 16.3 6 5.7 16.9 6 5.5
†Results for the R1 and R4 simulations are shown.
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the poor statistics for residues with high solvent accessibil-
ity. Again, there is hardly any difference between the R1
and R4 simulations.

Finally, the residues were split into two groups, those
within the stable helices (residues 5–11, 24–33, and
86–98) and the remaining ones. The entropy per residue
was averaged over these two groups and the results can be
found in Table V. As expected, the residues inside the
helices have a lower average entropy per residue compared
to the rest of the residues. There is again no significant
difference between the R1 and R4 simulations.

DISCUSSION

The configurational entropy for the entire protein and
for the backbone and side chains is not yet converged after
2 ns (Figs. 1 and 2). The configurational entropy of the R4
simulation, where the x1 angles of the side chains were
maximally disordered at the beginning of the simulation,
is indeed larger than the entropy of the R1 simulation. Yet,
the increase in entropy cannot be traced to the side chains.
The entropy is spread quickly throughout the entire
protein and can be found in the backbone as well as the
side chains. This view is strengthened when looking at the
entropy per residue: again, there are no significant differ-
ences between the R1 and R4 simulations. Looking closer
at Figures 1 and 2, it becomes clear that the difference
between the R4 and the R1 simulation decreases with
time. It can be expected that both simulations will eventu-
ally converge to the same entropy. They both represent
possible conformers of the molten globule state. The only
difference between the two simulations is that, due to the
reassignment of the x1 angles, R4 initially samples a part
of configuration space more quickly than R1. This also fits
with the observation of Smith et al.4 that the fluctuations
of the x1 angle are only larger for the R4 simulation in the
first 100 ps.

COMPARISON TO SIDE-CHAIN ENTROPIES
FROM ROTAMER COUNTING

The loss of conformational entropy of the side chains
upon folding is important for the folding process.10,21

Therefore, many attempts have been made to estimate the
conformational entropy of the side chains in different
environments. One assumption in most of these calcula-
tions is the distinction between conformational and configu-
rational entropy. A side chain is assumed to stay in a
conformational minimum for some time, undergoing only
vibrations. This gives rise to the vibrational contribution
to the entropy Svib. When the side chain jumps into
another conformation (another rotamer), the conforma-
tional entropy Sconform increases. A common assumption is
that both contributions are additive in which case their
correlation is ignored.12 We are not aware of any evidence
to justify this approximation. The vibrational entropy Svib

is commonly assumed to dominate the side-chain entropy.
Another common assumption is that Svib does not signifi-
cantly change between the folded and unfolded states of a
protein.21 In the discussion of side-chain entropy changes
upon folding it is, therefore, often ignored.

The conformational entropy Sconform is often calculated
using rotamer counting in databases of protein structures.

TABLE IV. Entropy Sres
fir Per Residue as a Function of

Solvent Accessibility After an Individual Residue Fit†

Accessibility
(%)

Number of
residues

R1 sim. Sres
fir

(J K21 mol21)
R4 sim. Sres

fir

(J K21 mol21)

5.0 36 12.5 6 3.4 13.6 6 3.6
15.0 15 13.3 6 3.5 14.1 6 2.9
25.0 11 15.9 6 4.1 17.7 6 4.4
35.0 12 17.4 6 5.4 16.2 6 4.9
45.0 6 17.1 6 3.9 16.5 6 3.6
55.0 15 19.0 6 6.2 19.7 6 5.2
65.0 13 22.2 6 5.6 22.2 6 5.3
75.0 3 26.1 6 2.9 26.8 6 2.9
85.0 9 17.9 6 4.3 19.1 6 5.7
95.0 3 19.2 6 3.5 19.5 6 3.1
†Results for the R1 and R4 simulations are shown.

Fig. 6. The starting structure of a-lactalbumin of both, the R1 and R4
simulations. The residues are coloured according to their entropy Sres

fir ,
which was calculated using an individual fit for each residue and divided
through the number of atoms in the residue. The colour scale ranges from
low entropy values (blue) to high values (red). Entropy values are given in
J K21 mol21.

TABLE V. Average Entropy Per Residue (Normalised by
division through the number of atoms) for Residues Inside

the Three Helices (Residues 5–11, 24–33, and 86–98) and
the Remaining Residues

^Sres
fir (R1)&

(J K21 mol21)
^Sres

fir (R4)&
(J K21 mol21)

Inside helices 14.2 6 4.7 14.9 6 4.7
Outside helices 17.0 6 5.8 17.6 6 5.5
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One of the original studies, that of Pickett and Stern-
berg,11 reports conformational entropy changes upon fold-
ing for all 21 amino acids obtained from rotamer counting.
They assume that in the folded state of a protein, the side
chains stay in a single conformation and that their confor-
mational entropy in the folded state is thus zero. Their
numbers can, therefore, also be interpreted as absolute
conformational entropies. More recent studies, such as
that of Creamer,18 are based on slightly different assump-
tions but yield similar results.

The comparison of the conformational entropy of folding
per residue to the configurational entropies per residue
presented in Table III is not straightforward:

● Eq. 1 using a least-squares fit yields the configurational
entropy, i.e., the vibrational part, the conformational
part, and the correlation between both.

● In our work, a model of the molten globule and not the
folding process is investigated. Sres

fir is the configura-
tional entropy of the residues in two possible conformers
of the molten globule.

● Only a-lactalbumin is considered in this work, while
Pickett and Sternberg,11 for example, scan a database
consisting of 50 different protein structures.

Nevertheless, a comparison between both sets of entro-
pies obtained by completely different approaches is of
some interest. Figure 7 shows a correlation plot between
the data of Pickett and Sternberg11 and the results from
the R1 simulation (Table III). For the R1 simulation, the
entropy per residue not divided by the number of atoms is
taken. A linear regression yields a poor correlation (corre-
lation coefficient of 0.6). The configurational entropy from

the 2 ns R1 simulation is an order of magnitude larger
than the conformational entropy of Pickett and Stern-
berg.11 This confirms the dominating role of the vibra-
tional part of the entropy.21 There are marked differences
in the ranking of amino acids in both methods. The
rotamer counting procedure of Pickett and Sternberg11

ranks the hydroxyl bearing amino acids serine and threo-
nine much higher than the entropy calculations based on
MD trajectories. On the other hand, the entropy of the
aromatic amino acids phenylalanine, tryptophane, and
tyrosine is underestimated by the same rotamer approach.
Different workers using different rotamer definitions ob-
tain a different rank order. The values for serine and
threonine given by Abagyan and Totrov,13 for example, are
approximately 30% lower than those given by Pickett and
Sternberg.11 Uncertainties in regard to these extremes
show shortcomings in the very simple rotamer counting
methods. Pickett and Sternberg11 appear to have overesti-
mated the entropy in the torsional angles of the rather
short side chains of serine and threonine. In the case of the
aromatic amino acids, the underestimation is probably due
to the neglect of vibrational motions of the aromatic rings.

The entropy per residue, which was normalised by
dividing it through the number of atoms in each residue,
was also correlated against the data of Pickett and Stern-
berg11 (see Fig. 8). The reasoning behind this is that the
vibrational part of the entropy is certainly proportional to
the number of atoms and thus a better correlation can be
expected. The correlation coefficient from a linear regres-
sion is indeed higher (0.79). Still, the ranking of amino
acids in both methods is very different.

Side-chain configurational entropies can also be esti-
mated using rotamer counting in combination with force-

Fig. 7. Correlation between the side-chain conformational entropy obtained by rotamer counting using a
database of 50 different protein structures (Pickett and Sternberg11) and the configurational entropy per
residue from the R1 simulation.
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field calculations.12 The values obtained are of similar
magnitude as those presented here. For a concise discus-
sion of the approximate sizes of the contributions of
various degrees of freedom to the configurational entropy
of proteins, we refer to Karplus et al.21

Ideally, one would wish to compare the results from the
simulations directly with data obtained experimen-
tally.22–24 For example, the change in nuclear magnetic
resonance order parameters between the native and dena-
tured states of some proteins has been empirically corre-
lated with changes in the side-chain or backbone entropy
on folding. The interpretation of the change in order
parameters is, however, strongly model dependent and
does not provide an absolute scale.22–24 Ultimately, experi-
mental verification of the results from simulation requires
the ability to analyse a representative ensemble of confor-
mations that will hopefully be available in the future.

CONCLUSION

We have shown that it is possible to estimate the
configurational entropy of an entire protein using the
formula of Schlitter (eq. 1). The time to obtain fully
convergent results for the entire protein is probably in the
range of 10 ns. The distribution between the backbone and
side chains and the correlation between both atom sets is
very similar in a-lactalbumin at low pH compared to the
b-heptapeptide described in Schäfer et al.7 This was
unexpected but strengthens the assumption that the physi-
cal principles governing peptide and protein motion are
the same.

No significant difference could be found between the two
simulation models of the molten globule state of a-lactalbu-
min. The entropy introduced by changing almost all x1

angles by 120° quickly dissipates to all degrees of freedom
of the system and both simulations seem to converge to the
same result.

The configurational entropy per residue calculated us-
ing an individual fit to the backbone of each residue
converges within the 2-ns simulations considered here. As
expected, the exposed side chains possess more entropy
than the buried side chains. There is generally a positive
correlation between solvent accessibility and configura-
tional entropy of a residue. Using the covariance matrix of
atom-positional fluctuations from MD simulations to calcu-
late the side-chain entropy is a much more direct method
and involves less assumptions than the side-chain rotamer
counting methods.

With so many protein simulations now covering a couple
of ns, a systematic study of side-chain entropies would be
of interest. This will give more statistics on different
amino acids in different parts of the protein structure.
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