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As the global Structural Genomics projects have picked up pace, the number
of structures annotated in the Protein Data Bank as hypothetical protein or
unknown function has grown significantly. A major challenge now involves
the development of computational methods to assign functions to these
proteins accurately and automatically. As part of the Midwest Center for
Structural Genomics (MCSG) we have developed a fully automated func-
tional analysis server, ProFunc, which performs a battery of analyses on a
submitted structure. The analyses combine a number of sequence-based and
structure-based methods to identify functional clues. After the first stage of
the Protein Structure Initiative (PSI), we review the success of the pipeline
and the importance of structure-based function prediction. As a dataset, we
have chosen all structures solved by the MCSG during the 5 years of the first
PSI. Our analysis suggests that two of the structure-based methods are
particularly successful and provide examples of local similarity that is
difficult to identify using current sequence-based methods. No one method
is successful in all cases, so, through the use of a number of complementary
sequence and structural approaches, the ProFunc server increases the
chances that at least one method will find a significant hit that can help
elucidate function. Manual assessment of the results is a time-consuming
process and subject to individual interpretation and human error. We
present a method based on the Gene Ontology (GO) schema using GO-slims
that can allow the automated assessment of hits with a success rate
approaching that of expert manual assessment.
© 2007 Elsevier Ltd. All rights reserved.
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Introduction

Structural genomics is a large-scale project aimed
at experimentally determining a large number of
protein 3D structures as rapidly and accurately as
possible using high-throughput methods.1 There
are a number of groups funded as part of the
Protein Structure Initiative (PSI) and other projects
exist across the globe such as Riken (Japan), SPiNE
(Europe) and the Anglo-Canadian-Swedish SGC
r operating
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lsevier Ltd. All rights reserve
(Structural Genomics Consortium). Each centre
has individual targets and goals but major aims
include:

• High-throughput automation of protein pro-
duction, structure determination and analysis

• Increased coverage of protein fold space and
hence the number of protein sequences amen-
able to homology modelling methods

• Investigation of protein structure to elucidate
function in health and disease

• Reduction of the cost of structure determination

The Midwest Center for Structural Genomics
(MCSG) is funded by the National Institute for
General Medical Sciences (NIGMS), as part of the
d.
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PSI of the National Institutes of Health. The centre
aims to develop and optimise new, rapid, integrated
methods for highly cost-effective determination of
protein structures through X-ray crystallography. In
order to achieve this goal, the centre has been
optimising all stages of protein structure determina-
tion: crystal growth, data collection, and structural
model generation and refinement. The success of the
project is indicated by the fact that as of 30 Sep-
tember 2005 (the official end of the first stage of the
PSI), the MCSG had over 5000 active targets and a
total of 319 structures deposited in the Protein
DataBank (PDB).2 However, of these deposits, over
a third have no functional annotation and are
described as merely hypothetical protein or un-
known function. The determination of a protein's
function by experiment is expensive and time-
consuming, and cannot be readily accommodated
in a high-throughput pipeline. Thus, there is a need
to develop automated function prediction methods
to at least provide an idea of the likely function of
the protein and to help guide experimental determi-
nation of its function.3 The scale of the problem is
clear when one considers that as of 30 September
2005 there were over 1100 proteins out of over
32,000 in the PDB labelled as unknown function.
In general, computational methods to infer a

function for an individual protein, such as its
enzymatic activity, fall into two main types: those
that are sequence-based and those that are structure-
based. In addition, functional information can often
be inferred through comparisons of genomic orga-
nisation and gene location analysis, or by methods
analysing protein interaction and gene regulatory
networks.
The most commonly used sequence-based ap-

proaches involve simple BLAST4 or FASTA runs
that perform direct sequence-sequence comparisons
of the query protein against large databases such as
UniProt5 or GenBank6 in order to identify similarity
with proteins of known function. More powerful
and sensitive profile/pattern-based methods utilise
information from the sequences in whole protein
families, where the family can be defined in terms of
3D structure, as in Gene3D7 and SUPERFAMILY,8 or
in terms of sequence similarity and function, as in
Pfam.9 Other useful approaches involve the inves-
tigation of phylogenetic profiles and amino acid
conservation. A number of studies10,11 have indi-
cated that significant sequence similarity (>40%)
and strong profile matches are the best indicators of
function, although there are always exceptions to
this rule.12

When the sequence-based methods fail, or pro-
vide few functional clues, the examination of the
3D structure of the protein may identify distant
relationships and suggest functional roles. The
structure-based methods can be classified according
to the level of protein structure and specificity at
which they operate, ranging from analysis of the
global fold of the protein down to the identifica-
tion of highly specific 3D clusters of functional
residues.13,14
No single method will be successful in all cases,
and there will be proteins for which no method is
useful. Accordingly, a sensible strategymay be to use
asmany differentmethods as possible, incorporating
data frommultiple sources, to increase the chances of
obtaining some functional prediction for any given
protein. To this end, the ProFunc15 server† has been
developed at the EBI in collaboration with structural
genomics consortia to explore the efficacy of
combining multiple methods and data sources in a
semi-automated manner. The data are presented to
the depositors in order to allow them to use their
expert knowledge to decide on the most likely
functional clues for experimental testing. The server
uses a variety of methods, drawing on multiple
databases:

• Sequence analysis primarily involves BLAST
runs against the PDB and UniProt databases to
help identify functionally annotated homolo-
gues. In addition, the sequence is scanned using
InterProScan in order to identify motifs indica-
tive of specific protein families or functional
motifs.

• The structure-based approaches used in ProFunc
involve large-scale fold matching methods (using
SSM16 and DALI), identification of smaller sub-
motifs (e.g. helix-turn-helix DNA-binding pat-
terns17), localised pockets (surface cleft analysis
and nest identification), and highly specific n-
residue template methods (enzyme active sites,
ligand-binding sites, DNA-binding residues and
reverse template analysis).14

• In addition to this, for bacterial proteins, the locus
encoding the UniProt BLAST hits are located in
the genome and neighbouring genes are tabu-
lated in the hope that functional inferences can be
made from the functions of the surrounding
genes.

Here, we use theMCSG structures as a test dataset to
investigate the ability of the ProFunc server to
determine function from structure, to identify the
most successful structure-based approaches, and to
suggest future directions and improvements.
Results

Our study into automated functional prediction
using the MCSG dataset is outlined as follows:

(1) Functional coverage of the MCSG dataset.
(2) Manual assessment of “known-function”dataset.
(3) Identification of the best structure-basedmethod

in ProFunc.
(4) Automated assessment of hits using GO-slims.
(5) Analysis of specific examples.

http://www.ebi.ac.uk/thornton-srv/databases/ProFunc
http://www.ebi.ac.uk/thornton-srv/databases/ProFunc
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Functional coverage of the MCSG dataset

Of the 282 non-redundant structures used in the
analysis, only a third have a known function (Figure
1). An additional 21% have a putative function based
on sequence similarity to another protein of known
function, while the remainder are of unknown
function. A quick way to assess how representative
this dataset is of proteins in general, and whether
there are any biases to certain protein types, is to
examine its “functional space” coverage. To this end,
the 92 structures of known function were plotted on
an EC wheel to estimate the functional coverage
(Figure 2(a)). The black sector represents the 30
structures of known function that are not enzymes,
ten of which are transcriptional regulators (Table 1).
Looking at the EC wheel and Table 1 together sug-
gests there is reasonable coverage of the functional
space with a slight tendency towards transcriptional
regulators and hydrolases (EC 3.x.x.x). If the MCSG
proteins are compared against the distribution of
EC numbers across the entire PDB (Figure 2(b)), it
is evident that the proportions for each top-level
EC class are similar, except that there appears to
be a slightly greater number of lyases and fewer
oxidoreductases.
Many of the MCSG structures have been anno-

tated with GO-terms but, for a more general func-
tional description, GO-slim terms can be examined.
In this study, the Molecular function section of the
Gene Ontology (GO) is of interest and Figure 2(c)
shows the coverage of this area of the GO-slim
hierarchy by the MCSG structures (terms shaded
green are covered, whereas those in red are absent),
the numbers in parentheses refer to the expansion of
terms by extending the GO slim (discussed below).

Manual assessment using known functiondataset

The results from the structure-based ProFunc
analyses for the 92 proteins of known function in
Figure 1. Breakdown of prior information for the 282
MCSG structures. The pie chart illustrates the proportion
of the 282 non-redundant structures classed as known
function, putative function or unknown function.
the dataset are illustrated in Figure 3 (see Supple-
mentary Data for a spreadsheet listing all manual
annotations). The results have been backdated to the
release date of the query by removing hits to
structures released after that date, giving a picture
of what the server would have suggested had it been
available at the time. The SSM results show that in
approximately 55% of cases the top fold match was
able to provide the correct functional assignment
(almost 20% of which are strongly predicted). The
standard template methods provide some success
but the most accurate structure-based method is the
reverse template approach (SiteSeer [SIT]), which
provides the correct function in 60% of the cases (of
which over 75% are strongly predicted).

Identification of the best structure-based method
in ProFunc

The best two structure-based methods identified
by manual assessment of the ProFunc results are the
reverse templates and SSM. In order to assess the
methods further, their receiver operating character-
istic (ROC) curves were calculated (Figure 4). In
order to calculate the curves, a score was used as a
cutoff, in the case of SSM, the Z-score was of interest,
whereas for the reverse templates it was the E-value.
Examination of the curves shows the SSM method

as having the best performance, the areas under the
curve being 0.83 and 0.70, respectively. An area of 1.00
corresponds to perfect prediction, while 0.50 is
equivalent to random prediction. One might expect
the two methods to overlap to some extent; i.e. to hit
the same PDB files. In fact, in only 25 of the cases did
bothmethods return the samePDB file as their top hit.
A further 25 casesmatched different PDB files but still
obtained identical functional predictions. Of the
remaining 32 cases, there were five where the reverse
templatesmethod found the correct matchwhile SSM
missed it, and one case where SSM gave the correct
answer and the reverse templatesmethodwaswrong.
This shows that, despite a significant overlap, there
are a minority of cases where one method identifies
matches missed by the other. It should be noted that,
even when both methods match to the same PDB
entry, they provide complementary information: SSM
identifies the fold similarity, while the reverse
template method pinpoints local regions of high
similarity and, in so doing, usually picks out the
functionally important site.

Automated assessment of hits using GO-slims

One question of interest is whether GO-slim terms
can be used to assess the functional predictions in an
automated way rather than requiring manual
assessment of true and false positives. To investigate
this, we used the 77 proteins with GO annotation
from the 92 MCSG proteins of known function. The
ProFunc results give a total of 207 structural
matches: 68 SSM fold match; 74 reverse templates;
eight enzyme templates; 47 ligand templates; and
ten DNA templates.
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Comparison of the GO terms between a query and
hit protein can determine whether the hit is a true
positive or a false positive. However, even for the
correct matches, the terms do not usually match
100%, or one protein may have more terms than the
other. So, the problem of comparing GO terms is in
determining howmany terms need to agree before a
match can be deemed a true positive. We tried a
number of different cut-offs to see which gave the
Figure 2. (a) EC wheel for 92 proteins of known function.
proteins with different Enzyme Commission numbers. The cent
the source of the colouring. Red, EC 1.x.x.x (oxidoreductases); b
yellow, EC 4.x.x.x (lyases); purple, EC 5.x.x.x (isomerases); orang
stage down the EC schema through the second, third and, finally
EC classes in the entire PDB. The proportions illustrated are take
level EC number. This information was extracted from the Enzy
thornton-srv/databases/enzymes/). (c) A map showing the co
MCSG structure from the full dataset annotated with GO terms h
terms derived from the GOA-GOslimmapping file. All GO-slim
weremapped. The GO-slim terms found in the annotations of th
theMCSGdataset are coloured red. The numbers in parentheses
hierarchy by the extended GO-slim and show the spread of the
best agreement with the manual assignments. The
cut-offs we tried were 25%, 50%, 75%, 100%, and a
constrained 50% wherein a 100% match was
required where the query protein has only two GO
terms. We tried both the generic GO-slims (31 terms)
and our hand-curated molecular function (MF) GO-
slims (190 terms), which have more term levels than
the generic version. The closest agreement to the
manually assessed function prediction results was
The EC wheel illustrates the proportion of known function
ral core corresponds to the top level of the EC schema and is
lue EC 2.x.x.x (transferases); green, EC 3.x.x.x (hydrolases);
e, EC 6.x.x.x (ligases). Each shell then corresponds to the next
, the fourth level. (b) A pie chart showing the distribution of
n from the numbers of PDB entries in the PDBwith each top-
me Structures Database at the EBI (http://www.ebi.ac.uk/
verage of the generic GO-slim by the MCSG dataset. Any
ad all their GO-terms extracted and the associated GO-slim
s from theMolecular Function branch of the Gene Ontology
eMCSG structures are coloured green; those not covered by
correspond to the number of terms added at that point in the
additional information.
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obtained with a 75% cut-of on the MF-GO-slims (see
Supplementary Data for a detailed discussion). The
generic GO-slims fared poorly due to the small
number of terms. Of the 207 function predictions,
over 65% (136/207) involved only two GO-slim
terms. So, the overall results were affected signifi-
cantly by how these cases were treated (hence the
introduction of the constrained 50% cut-off rule).
Even for the 100% cut-off rule, there were identifi-
able errors. For example, ten of the 16 false negatives
resulted because the hit protein had fewer GO-slim
terms than the query protein, making a 100% match
impossible. In other cases, the errors resulted from
errors in annotation. Thus, the match to PDB entry
1jvn (a bifunctional protein with amidotransferase
and lyase activity) reported for the MCSG structure
1kxj (glutamine amidotransferase) by both SSM and
the reverse templates was deemed incorrect because
the GO annotation for 1jvn covers only its lyase
activity. In another case, the GO annotation of an
MCSGHTH transcription regulator (1sfx) is detailed
incorrectly as a ligase with binding activity. The
strong structural hit is to a Methanococcus jannaschii
DNA-binding protein, which is described in GO as a
nucleic acid binder with transcription regulation
activity. This hit will always be seen as a false
negative match using the GO-slim method.
The MF-GO-slims performed better than the

generic GO-slims, with the best agreement with the
manual assessment (83% of the cases) being achieved
for a cutoff of 75% (see Supplementary Data). The
MF-GO-slims perform better, they provide more
specific functional annotation and hence are more
useful when, say, planning any experimental verifi-
cation. For example, the coverage of the EC hierarchy
in the MF-GO-slims goes to the third level rather than
only the first. Now 6% of the 207 cases have only two
terms describing a protein, compared with the 65%



Table 1. Description of 30 known function proteins with
no EC class

PDB
code Function and description

1td5 Repressor of aceBA operon, IclR transcriptional regulator
(repressor)

1lj9 Transcription regulator (MarR-like transcription factor)
2a61 Transcriptional regulator tm0710
1mkm Transcriptional regulator, IclR family
1z05 Transcriptional regulator, ROK family
1z0x Transcriptional regulator, TetR family
1zk8 Transcriptional regulator, tetr family
1sfx HTH transcription regulator
1s3j MarR/SlyA like transcriptional factor
1ylf RRF2 family protein (transcriptional regulator)
1sr8 Cobalamin biosynthesis protein
1u7n Fatty acid/phospholipid synthesis protein
1mkz Molybdopterin biosynthesis, protein B
1xau B and T lymphocyte attenuator
1otk Phenylacetic acid degradation protein paac
1y89 DevB protein (sol/devb family)
1kr4 Divalent cation tolerance protein
1zma Bacterocin transport accessory protein
1xwm Phosphate transport system protein phoU
1zox Clm-1 mouse myeloid receptor extracellular domain

(Ig-like receptor)
1pqz Murine cytomegalovirus immunomodulatory protein

m144, modulation of NK cell, immunoglobulin-like
1tua mitochondrial-type HSP70
1vzy HSP 33 chaperonin
1r0d I/LWEQ domain bind to actin, huntingtin interacting

protein-1-related
1y71 Kinase-associated protein B
1x7f Outer surface protein
1j8r PapG receptor-binding, pyelonephritic adhesin
2a5l Trp repressor-binding protein wrba
1mkf Viral chemokine-binding protein M3
1pzx Signal-recognition particle (DegV-like)
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for the generic GO-slims. Seven of the cases have ten
or more terms, whereas the most terms per protein in
the generic GO-slims is five.
Thus, the MF-GO-slims provide a greater specifi-

city and agreement with the manual assessment
than the generic GO-slims but without the problems
inherent in the full Gene Ontology, which is too
complicated and distributed unevenly. In the cases
where the MF-GO-slims disagree with the manual
assessment, the reason for the disagreement tends to
be where the former overpredicts true positives.
In practice, the procedurewould be to first identify

general similarity in function using the MF-GO-slim
followed by more accurate comparisons using the
full Gene Ontology. Clearly, any GO-slim approach
is of greatest use when the function of the query and
hit proteins are already known and annotated with
GO terms, but what of queries that are of unknown
function or as yet unreleased? In this situation, the
method is useful for comparing all hits from all
methods with one another in an attempt to find
common general functions amongst the top hits.

ProFunc typical examples

Of course, the only sure way of verifying a
functional prediction is via experiment. A major
component of our collaborative effort within the
MCSG is the experimental validation of functional
predictions made by the ProFunc server. The three
examples chosen below illustrate the various ways
in which the server has been of use to experimen-
talists and how much work remains.

Example 1: Function experimentally confirmed

One example where predictions made using the
server have been verified experimentally has been
reportes.18 The example is that of the 1.5 Å crystal
structure of BioH protein from Escherichia coli solved
by the MCSG. Analysis of the structure using
ProFunc returned a significant match (r.m.s.d. of
0.28 Å) to an enzyme active-site template for the Ser-
His-Asp catalytic triad of the lipases. This prompted
the experimental characterisation of this protein,
which was found to be a novel carboxylesterase
acting on short acyl chain substrates.

Example 2: Function suggested from structure

The 1.9 Å crystal structure of hypothetical protein
IsdG from Staphylococcus aureus, PDB 1xbw, was
released on 12 October 2004. Analysis using the
ProFunc server revealed that all the BLAST hits were
to other hypothetical proteins of unknown func-
tion. A separate PSI-BLAST run revealed weak simi-
larity to antibiotic biosynthesis monooxygenases.
An InterProScan run provided significant hits to two
functions: the first was a PROSITE pattern match to
“Peptidase, cysteine peptidase active site” and the
other a Pfam domain “Antibiotic biosynthesis
monooxygenase”. The genome analysis suggests a
number of possible functions, including oxidore-
ductase, methyltransferase, epimerase, transporta-
tion, possible RNA binding, and others.
When the structure-basedmethodswere employed,

we found that the strongest SSM foldmatcheswere to
hypothetical proteins and all except one of the
remaining hits were monooxygenases. There was no
hit to a known enzyme or a ligand-binding template
and only two rather weak matches to DNA-binding
templates. If the reverse templateswere examined,we
found the majority of the top hits were to proteins of
unknown function but the first significant matchwith
an assigned function was to a monooxygenase from
Streptomyces coelicolor (PDB entry 1lq9).
This is an example of where the sequence-based

methods provide a variety of suggested functions
with similar confidence and the structure-based
approaches provided additional supporting evi-
dence that support the prediction.
Experimental analysis has characterised the pro-

tein as a haem-degrading enzyme with structural
similarity to monooxygenases.19

Example 3: Function remains unknown

The 1.5 Å crystal structure of a hypothetical
protein (pa4017) from Pseudomonas aeruginosa, PDB
2a35, was released on 9 August 2005. The structure
was submitted to the ProFunc server and the results



Figure 3. ProFunc results for
proteins of known function. The 92
proteins classed as having known
function in the MCSG dataset were
analysed using ProFunc. The top hit
(after parsing for release dates) was
classified by success and strength of
hit. The hits to hypothetical proteins
or members of families/domains of
unknown function are classified as
unknown. The structure-based
methods used by ProFunc are as
follows: SSM, secondary structure
matching (MSDfold): fold com-
parison service; ENZ, enzyme tem-
plate search (Catalytic Site Atlas
data); LIG, ligand-binding template
search (automatically generated
templates); DNA, DNA-binding
template search (automatically gen-
erated templates); and SIT, SiteSeer
(reverse template method).

1517Structure to Function in Structural Genomics
analysed. BLAST searches against the UniProt
database showed similarity to other hypothetical
proteins. The sequences of the majority of these hits
(and that of 2a35 itself) had similarity to domains
associated with NAD-binding oxidoreductase activ-
ity. Structural comparisons provide additional evi-
dence for this prediction: fold similarities to NADP-
dependent reductases; ligand-binding template
matches to NAD and NAP complexed structures;
an enzyme template match to the short-chain dehy-
drogenase-reductase family; and reverse-template
matches to members of the short-chain dehydro-
genase-reductases and other NAD/NADP-binding
Figure 4. ROC curves for SSM and SIT based on
manual function assignment. The ROC curves are plotted
for SSM results and for SiteSeer (reverse template) results.
The cut-off used by SSM is the Z-score of the hit, whereas it
is the E-value that is of interest in SiteSeer (reverse
templates). The ideal curve would rise vertically from the
origin and then horizontally out to the right, and would
give an area under the curve of 1. The plot shows that the
SSM Z-score appears to be a better measure for distin-
guishing between true and false positives than the SiteSeer
(reverse template) measures.
proteins. Further examination of the structure
indicated that the 2a35 structure had its C-terminal
section (about ten residues) lying in the cleft
blocking the potential NADP binding site. This
means that the predictions may be invalid but it is
possible also that this conformation is not the one
adopted in the cell. The questions then become
whether the cleft is blocked by the C terminus, what
is the new function and why?
The purified protein was used to assess the

binding of a variety of small molecules (including
NAD, NADH, NADP, NADPH, cAMP, ATP, ADP,
nucleotide sugars, amino acids, etc); however, none
of the selected molecules showed significant bind-
ing. It would therefore appear that 2a35 is not
capable of binding the predicted co-factors and its
function may differ from those suggested by
computational methods.
One interesting observation is that 2a35 shows

30% sequence similarity to Tat-interacting protein
Tip30 (a human protein deposited in the PDB (2bka)
that has pro-apoptotic and anti-metastatic proper-
ties). Bioinformatic analysis of this Tip30 protein
shows similarity to the short-chain dehydrogenase-
reductases, and biochemical studies show NADPH-
binding specificity. The function of the Tip30 protein
appears to have been adapted from a metabolic
enzyme to a regulatory protein, perhaps a similar
adaptation has occurred in the 2a35 protein.
P. aeruginosa is a Gram-negative, aerobic, opportu-

nistic pathogen affecting plants and immunocompro-
mised humans (e.g. burns, wounds, hospital-aquired
infections). It is observed that hypothetical protein
PA4017 showed strong structural similarities to
human Tip30 protein and Arabidopsis thaliana pro-
teins. If the plant proteins are active (as in humans) in
inducing apoptosis, an inactive homologue from the
Pseudomonas pathogen could prevent the plant (or
human) host from destroying infected cells. This
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hypothesis is conjecture and requires further experi-
mental analysis; however, it illustrates that even in the
cases where predictions are tested but provide nega-
tive results, they can open new avenues of research.
Discussion

The MCSG has produced a large number of
structures during the first stage of the PSI (over
300 in five years); the structures have a wide range
of functions and a number have novel folds. The
MCSG structures have therefore been a useful data-
set to test and develop the ProFunc server. The idea
behind ProFunc is that a combined approach of
sequence-based and structure-based methods,
although providing the experimentalist with a lot
more data, is more likely to provide the correct
function or at least provide clues that can be tested.
It is widely accepted that strong sequence simi-

larity is generally a good indicator of similarity in
function. When we looked at the sequence-based
methods for the dataset we found that InterProScan
gave a success rate of 70% correct, BLAST versus
UniProt was 95% correct, and genome analysis
provided about 85% correct. It would appear from
this that the sequence-based methods are all we
would need; however, these are likely to be an over-
estimate, as the results have not been backdated like
the structure-based analyses. UniProt archives pre-
vious versions of sequences and each entry contains
release dates and version numbers, but the back-
dating process is not straightforward. As the
expectation values for BLAST hits depend on the
size of the database, it is not enough to just ignore
the entries after the release date; a new UniProt
database would be needed for each structure. This is
an even greater problem for the HMM libraries, as
they are updated continually with limited archives.
To address this problem, we have initiated the
collection and storage of data from ProFunc
sequence and structural analyses on deposition for
all MCSG structures produced during PSI2 to give
an accurate reflection of the state of the databases at
the time of release.
Although the sequence-based approaches are the

most successful, when they fail to provide any
interesting hits (such as hypothetical proteins of
unknown function) or the sequences have diverged
too far to detect their common ancestry, the
structure can be important in restricting the options.
Similarly, when a sequence match is weak, the
information from any structural match can increase
the confidence in any tentative functional assign-
ment that the sequence may suggest. The first stage
of such functional studies is the identification of
similar folds using software such as SSM. Our
analysis suggests this is an effective method even in
the “twilight zone” of low sequence similarity.
Additional evidence for more specific functions
can be provided by using local structural compar-
isons such as the reverse template method, which
can help identify to functional similarities indepen-
dently of the global fold comparison. Our compar-
ison of these methods suggests that SSM, giving a
slightly better ROC curve, provides more successful
function predictions overall, although the informa-
tion from the reverse template method is more
specific, in that it usually locates the functionally
important regions.
Occasionally, SSM misses cases where folds have

diverged but local, functional regions have been
preserved over evolutionary time. These cases are
picked up by the reverse template method. One such
example is that of MCSG target APC5049 (PDB
entry 1tjn). This structure was deposited on 6 June
2004 and is annotated as a “sirohydrochlorin
cobaltochelatase” (EC 4.99.1.3). Analysis using
ProFunc provided strong structural matches using
the reverse templates method. The top non-self hit,
with a score of 253 and an e-value of 0.005, was to
PDB entry 1qgo (an anaerobic cobalt chelatase
involved in cobalamin biosynthesis). This correct
match was not identified using SSM and, in fact its
top hit, with a rather poor Z-score of 3.9, was to a
MICAREC pH 4.9, DNA-binding response regulator
(PDB entry 1nxs) and is a false positive match.
Examination of the full list of SSM results for this
structure reveals that the hit identified using reverse
templates appears at position 65 in the SSM results
at a marginally lower Z-score of 3.8. One reason that
the true positive fails to achieve a higher Z- score is
that the superposition of secondary structures is
attempting to align a strand from the MCSG target
with a helix from 1qgo. The reverse template
approach is unaffected by this mismatch, as it is
looking at a locally conserved region distant from
the mismatched secondary structures.
Another case involves a putative protein from

Aquifex aeolicus (PDB entry 1t6t). The most likely
function of this protein is a topoisomerase or
primase with strong supporting evidence coming
from sequence-based approaches. The structural
analyses performed by ProFunc once again pro-
vided strong reverse template hits to primase-
helicase proteins and a reverse gyrase. The SSM
results provided weak matches to a variety of
proteins, including sulphotransferases and PEP-
dependent phosphotransferases. If the reverse tem-
plate hits are examined in greater detail, it becomes
apparent that the putative protein is a single
domain, whereas the primase and topoisomerase
proteins are multi-domain. As SSM is attempting to
match the putative protein with the entire multi-
domain structures, the hits are scoring badly and are
not even listed, as they fall below the requisite 50%
of secondary structure to be considered a match. The
reverse template method once again has no such
problem, as it is dealing with local similarity within
a 10 Å radius of any putative site. One way round
this issue with SSM would be to alter its search
parameters but this creates additional problems
with increased run-time and a far greater number of
hits, the majority of which will be false positives.
The other structure-based methods are useful in

different ways. When a strong match is found to one
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of the enzyme templates, the functional significance
is greater, as the templates have been created from a
carefully annotated database of known enzyme
reactions and catalytic residues. In the case of the
ligand-binding and DNA-binding templates, the
matches can be used to identify likely substrates,
cofactors or fragments of ligands that can fit in the
active site. This information can be of importance to
the user when trying to set up ligand-binding assays
or co-crystallisation experiments.
One of the biggest problems is the definition and

comparison of function; how do we determine a
“correct” prediction? In this analysis, the assignment
of whether a hit is correct was achieved through a
laborious manual process fraught with difficulties
and occasional human error. One particularly tricky
case involves an ABC transporter protein that binds
ATP (PDB entry 1ji0). In this example, the ProFunc
reverse template results provide a number of hits to
other ABC transporter proteins but there are also hits
to numerous other structures such as “DNA mis-
match repair protein”, “gluconate kinase”, “replica-
tion factor C” and “cell division control protein”. The
problemwith assessing these hits is that they all have
GO terms that include “ATP binding”, so are these to
be marked as true positives or false positives? The
question arises because the reverse template method
is looking for local similarities in structure, in this case,
the ATP-binding region. It could be argued that all of
these hits are “correct”, as they all bindATP, butwhen
one looks at the function as a whole these become
false positive hits. In the initial manually based
analysis these cases are identified as false positives
but the issue is a contentious one and illustrates the
need for a clearer definition of a “correct” hit.
Another example is that of tartronate semialdehyde

reductase (PDB entry 1tea), which was found to have
two significant hits to “hydroxyisobutyrate dehydro-
genase”. These hits were annotated as false positive
on the basis of an initial textual comparison but
further examination reveals both tartronate semial-
dehyde reductase and hydroxyisobutyrate dehydro-
genase share the top three levels of EC classification
(in this case EC 3.1.1.x). The EC class was not picked
up in the procedures and illustrates some of the
problems that can occur if entries are not fully
annotated in the databases. In this situation, it can be
argued that the manual classification should be
altered to true positive, as they are performing
similar reactions even though substrate specificity
has diverged.
Amore robust method to compare the functions of

two proteins is to use GO annotation from the entire
Gene Ontology but this has its own difficulties, the
greatest being that not every protein in the structure
or sequence databases has GO annotation. This issue
will improve with time, so this problem aside, the
most pressing problems relate to the confidence of
assignments: some are manually curated whereas
others have been inferred from electronic annota-
tion. The two situations do not have the same
weighting or confidence and therefore this needs to
be reflected in any comparison. Additionally, the
GO system is not a linear hierarchy and how exactly
to compare any two terms is difficult.
Instead of using the entire ontology to compare

the functions of two proteins we have shown that
the use of generic GO-slim terms can bypass many
of the difficulties in comparing sets of terms. In this
initial study, we found that using a cutoff of 75–
100% of the GO-slim terms matching between a
query protein and a hit is a good indicator of a
positive match. The success rate was comparable to
expert manual assessment of the same data. One
problem that did come to light was that the generic
GO-slim is too generic; any functional comparisons
made are too vague to be of usewhen trying to design
experiments to test functional predictions. In order to
bridge the gap between the two approaches, we
constructed a more extendedmolecular function GO-
slim (MF-GO-slim) that allows for more detailed
comparisons. This extended MF-GO-slim showed a
marked improvement on the Generic GO-slim and a
cut-off of 75% matching terms gives the best
performance. Once a similarity in general function
has been identifed by the MF-GO-slim, more detailed
comparisons can bemadeusing the full ontology. This
study has shown that this very simplistic approach is
useful for comparing the functions of annotated
proteins but it is evident that further work will be
required in order to define a quantitative measure for
the similarity in GO-slim terms, perhaps using the
method described by Lord et al.20 for identifying
semantic similarity between entries in a database. The
greatest problem with the method is that it is useful
only for situationswhere a hit has been assignedGene
Ontology terms; this issue will be resolved only by
greater coverage byGO of the sequence and structure
databases. One final question is where this approach
would be used when examining results from hypo-
thetical proteins of unknown function. The GO-slim
approach can be used in this case to compare all the
annotated hits from all methods with one another in
order to identify commonalities in functions; the
greater the similarity in function amongst the hits the
more likely it is that the function is correct.
From our experiences with the ProFunc server and

from the success rates described previously, it is
evident that, in order to improve our success rate for
the second phase of the PSI, the range of analyses
will need to be improved and include new pre-
dictive methods not based on homology. This is
echoed by the need to look at higher-level functions
where we will need to take into account the cellular
component, interacting partners, networks, expres-
sion, regulation, etc. The MCSG structures were a
good dataset to develop and test the methods but
specific benchmark datasets will be required in
order to test the variety of methods and allow
comparisons to be made between them rather than
the current state with each method having its own
“good examples”. The consideration of various
functional attributes (e.g. enzyme/non-enzyme,
DNA-binding, metal-binding, etc) and having
benchmark datasets for each attribute would be a
much more successful strategy than trying to build a
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complete dataset to test the rather vague concept of
“function prediction” as a whole.
Methods

Dataset construction

The starting dataset comprised the 319 PDB deposits
solved by the MCSG as of 30/09/2005. This was then
culled using the PISCES server at 30% sequence identity to
provide a non-redundant set of 282 structures. The
resultant dataset was then split into the structures for
which the functions were known, those where putative
functions had been assigned by the depositors before
submission to ProFunc, and those for which the function
remained unknown (e.g. “hypothetical protein”).

Structural analysis

Each structure was submitted to the ProFunc server and
the results stored for analysis. The various methods within
ProFunc use their own scoring scheme to rank the hits and
classify them by the confidence of the match.15 These
scoring schemes were adopted for this analysis and used
to assign confidence to the functional predictions. The
parameters used to measure confidence and rank hits are
described in Table 2 along with their respective ranges.

Filtering hits

In order to compensate for any temporal bias, the
structure-based results were “backdated” to the time of
release of the MCSG query protein by ignoring hits to
protein structures released after the MCSG structure. This
allows us to see what the results would have suggested at
the time of release. Note that it is not possible to backdate
the sequence-based analyses in the same way, hence our
focus on the structure-based approaches.
Manual functional comparison

Any free text was extracted from the PDB record along
with any keywords from the corresponding PDBsum
database entry for each post-filtered top hit. These were
placed in a file alongside the functional annotation of the
MCSG structure for comparison. The match was then
assessed as a correct hit, false hit, unknown function, or no
hit and noted in the file. The global sequence identity of the
match was also calculated using SSEARCH in order to
Table 2. Parameters chosen for each ProFunc method to clas

Code “

Structure-based methods
Secondary structure
matching (SSM)

SSM Z

Templates (using internal
scoring scheme)

ENZ, LIG, DNA, SIT C
“certain” (E

“probable” (E

ENZ, enzyme active site templates (CSA); LIG, ligand-based autom
generated templates; SIT, Reverse template.
identify clear homologues when assessing cases of
moderate structural similarity.21,22

Comparing the best methods from manual
assessment

A robust way of assessing the effectiveness of the best
structure-based procedures is to calculate their ROC
curves. The ROC curve is a graphical representation of the
trade-off between the false negative and false positive
rates for every possible cut off value. For each structure of
known function, the top hit (after the filtering process) was
extracted from ProFunc. Each hit was then annotated with
true positive (+), false positive (−) or unknown (?) by
manual comparison of the known function with the
header details and any GO annotation of the hit. Only
the true and false positive results were kept (hits to
unknown function cannot be grouped in either category
and can be ignored) and used, alongside their scores, to
create the ROC curve.

Automatic functional comparison: GO-slim method

The Gene Ontology23 is an attempt to standardise the
description and definition of biological terms through
three structured, controlled vocabularies. The three major
sections are Cellular Component, Biological Process and
Molecular Function; it is the last of these that is of interest
in this study. Many recent automated function prediction
methods (e.g. Phunctioner24) have utilised the Gene
Ontology data in order to aid the prediction and com-
parison of function.25–29 There are a number of ways to
compare GO terms but the task is made difficult by the fact
that not all GO-terms are useful (e.g. “molecular function
unknown”), the level of annotation differs between
proteins of the same function, and any probability-based
approach will be more biased towards those proteins that
appear regularly in the sequence databases. In addition,
the ontology is not an even hierarchy and some areas of
research are over-represented, as are some species.
One way to deal with the inconsistencies in the ontology

is to use the GO-slim system. Dolan et al.30 demonstrated
their use in assessing the consistency of GO annotations
from different groups. GO-slims are cut-down versions of
the GO that give a broad overview of the ontology and are
useful in situations where a broad classification of a gene
product function is required. The terms included in any
one GO-slim can be selected by the user according to their
needs, such as the aforementioned study where compar-
isons were made using a GO-slim consisting of only 19
terms. As standard, the Gene Ontology consortium
provides a generic, species-independent GO-slim that
condenses the entire ontology into 68 key parent terms, of
sify hit “strength”

Strong” hits “Moderate” hits “Weak” hits

-score >10 Z-score 6–10 Z-score <6

onfidence:
-value <1.00×10−6) or
-value 1.00×10−6–0.01)

Confidence:
“possible”

(E-value 0.01–0.10)

Confidence:
“Longshot”

(E-value >0.10)

atically generated templates; DNA, DNA-based automatically
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which only 31 are in the “molecular function” class (Table
1a in the Supplementary Data). This generic GO-slim was
selected as a starting point to investigate automatic
assessment of function prediction accuracy.

Procedure to compare known function with predicted
function from top hit

In order to compare a query protein with any hit
protein, a list of GO-slim terms was required for each. This
information was obtained using various mapping files
from the Gene Ontology FTP site. If a UniProt code is
available for the protein, the termswere extracted from the
GOA-UniProt mapping,31 if a PDBcode is available, then
the GOA-PDB mapping file was scanned. Every GO term
was then compared against the GO-slim list and, if
present, added into the final list of GO-slim terms for
that hit as is. If, however, the term was further down the
graph its GO-slim terms needed to be identified by
searching the GO to GO-slim mapping file (maps all of
the ontology to the GO-slim). The full list of identified GO-
slim terms was then condensed down to a final list of
unique GO-slim terms.
If a hit were correct, the protein would be expected to lie

in a similar “region” of the GO graph and therefore it
should in theory share more GO-slim terms than would be
expected of proteins with very different functions. The
unique GO-slim terms from the hit were compared against
the unique GO-slims from the query. If the number of
terms matched was deemed to be significant, it was
assigned as a true hit, otherwise it was deemed false. The
derivation of what constitutes a significant number of
matched terms is discussed in Results.

Creation of molecular function GO-slim
(“MF-GO-slim”)

One problem with using the generic GO-slim is its
generality (7844 molecular function GO terms slimmed
down to 31 key parent terms), which is exemplified by the
enzymes. The generic GO-slim condenses the Gene
Ontology at a level that is equivalent to the top level of
the EC schema (e.g. E.C. 1.x.x.x : oxidoreductases). In
order to derive an extended GO-slim that is more specific
for molecular function prediction the ontology needed to
be edited. The Gene Ontology consortium offers the DAG-
edit tool to view the entire ontology and allow users to
select terms of interest to put into a new GO-slim. A perl
script supplied by the GO team was then used to map the
entire ontology to the newly created extended GO-slim
(MF-GO-slim) so that it could be used in place of the
generic GO-slim. The 190 molecular function GO-terms
selected for inclusion as part of the MF-GO-slim are given
in Table 1b of the Supplementary Data.
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