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INTRODUCTION

To understand the function of a protein at the atomic level

the availability of an accurate three-dimensional model is essen-

tial. Where an experimentally determined structure is unavail-

able, structure prediction techniques can often provide suffi-

cient information for many purposes. Despite the substantial

progress in ab initio structure prediction,1,2 homology model-

ing is still the most reliable and widely used approach to obtain

high-quality structural models for a given target protein assum-

ing that a suitable template structure can be identified by

sequence similarity.3–7 However, the extent to which current

homology models can be used with confidence is unclear.6 This

is in part due to alignment errors, but primarily due to the

lack of effective methods that can be used to refine the struc-

tural models obtained.8–10

Alignment quality has improved significantly over recent years

with the introduction of the PSI-BLAST11 technique and meth-

ods that combine profile–profile sequence comparisons12–19

and structural information.20–35 Nevertheless, problems associ-

ated with insertions, deletions, and misalignments remain com-

mon especially when there is only a remote relationship

between the query and the template sequence. These in turn
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ABSTRACT

A protocol is presented for the global refinement of

homology models of proteins. It combines the advan-

tages of temperature-based replica-exchange molecular

dynamics (REMD) for conformational sampling and

the use of statistical potentials for model selection. The

protocol was tested using 21 models. Of these 14 were

models of 10 small proteins for which high-resolution

crystal structures were available, the remainder were

targets of the recent CASPR exercise. It was found that

REMD in combination with currently available force

fields could sample near-native conformational states

starting from high-quality homology models. Confor-

mations in which the backbone RMSD of secondary

structure elements (SSE-RMSD) was lower than the

starting value by 0.5–1.0 Å were found for 15 out of

the 21 cases (average 0.82 Å). Furthermore, when a

simple scoring function consisting of two statistical

potentials was used to rank the structures, one or more

structures with SSE-RMSD of at least 0.2 Å lower than

the starting value was found among the five best ranked

structures in 11 out of the 21 cases. The average improve-

ment in SSE-RMSD for the best models was 0.42 Å. How-

ever, none of the scoring functions tested identified the

structures with the lowest SSE-RMSD as the best models

although all identified the native conformation as the

one with lowest energy. This suggests that while the pro-

posed protocol proved effective for the refinement of

high-quality models of small proteins scoring functions

remain one of the major limiting factors in structure

refinement. This and other aspects by which the method-

ology could be further improved are discussed.
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lead to errors in the homology model, including errors

in the packing of side chains, poorly defined conforma-

tions of loops, and distortions or shifts in secondary

structure elements (SSEs). A number of recent studies

began to address the alignment errors either by exploring

alternative alignments36–38 or by searching for reasona-

ble conformations during the model building step.39 In

addition to errors stemming from the alignment proce-

dure, there are also unavoidable errors in any homology

model because of the fact that the query sequence and

the template are by definition different. In principle, this

means that all homology models must be refined. It

appears optimal to divide the structure refinement pro-

cess into two stages depending on the type of error to be

addressed. First, local structural errors involving side

chains, loops and SSEs are detected and removed while

the overall structure of the backbone is kept fixed. Sec-

ond, the protein backbone, which normally is taken

directly from the template, is adjusted in an effort to

improve the global fold.

Global structural refinement requires both an efficient

means to sample conformational space and a means to

accurately identify near-native structures.40 While energy

minimization (EM) has been used in a number of studies

to optimize the initial model,41–43 molecular dynamics

(MD) simulation is the most commonly used sampling

technique in refinement studies. In contrast, a wide vari-

ety of different approaches have been used to attempt to

select near-native conformations. For example, Lee

et al.44 were able to select a near-native structure (1.8 Å

Ca RMSD) from a MD-generated ensemble starting

from a model of 2.8 Å RMSD with respect to the experi-

mental structure using a MM-PBSA free energy function.

Lu and Skolnick45 used repeated cycles involving short

MD simulations followed by scoring using a statistical

potential to refine low-resolution ab initio models of 30

small proteins. Fan and Mark46,47 studied the utility of

extended MD simulations in water and a combination of

MD together with a heuristic chaperon approach for the

refinement of model structures generated using

ROSETTA. Flohil et al.48 used a simple knowledge-based

algorithm to select structures from a series of restrained

MD simulations in an attempt to refine three homology

models from CASP3. Krieger et al.49 optimized an all-

atom force field that was used to refine 25 models which

on average moved 0.1 Å closer to their native structures.

Despite occasional successes, the main conclusions that

can be drawn from these studies are that (1) only confor-

mations close to the initial structure are sampled using

standard MD techniques (unless long time scales used)

and that (2) the ability of the currently available scoring

functions to distinguish near-native from compact non-

native structures must be improved.47 Most recently,

Chen and Brooks50 applied the replica-exchange molecu-

lar dynamics (REMD) technique with a generalized Born

(GB) solvent model51,52 to the refinement of 5 CASPR

(the Continuous CASP Model Refinement Experiment)

models. Alternative refinement procedures that do not

depend on MD as the search engine have also been

developed primarily in the context of ab initio structure

prediction. Baker and coworkers2 for example reported

encouraging results for 5 of 16 small proteins using a

refinement protocol in which multiple rounds of random

torsion-angle perturbation and Monte Carlo (MC) relax-

ation were performed on low-resolution models built

from a set of sequence homologues of the target protein

using the standard fragment insertion approach from

ROSETTA.53 Another method based on fragment assem-

bly and MC simulation is TASSER,54 which has been

applied to the refinement of NMR structures55 and di-

meric structural models.56 Recently, these ab initio

approaches have also been applied to the refinement of

homology models. Misura et al.57 attempted to refine a

series of homology models using a version of ROSETTA

in combination with evolutionarily derived distance con-

straints. They found that in 22 out of 39 cases a model

that is closer to the native structure than the template

over the aligned regions could be found within the 10

lowest-energy models. However, this method was very

computationally intensive with the refinement of one

model requiring 90 CPU days. In addition to the

approaches outlined earlier, a number of methods that

employ statistical potentials or empirical scoring func-

tions to select the near-native models from an ensemble

of homology models have been developed.37,38,43,58,59

In this article, we investigate the utility of a refinement

protocol that combines REMD as the primary sampling

technique with series of different statistical potentials to

select the best models. Temperature-based REMD has

been shown to lead to enhanced sampling with respect to

standard MD simulation techniques and has been exten-

sively used in peptide folding simulations as well as for

the refinement of NMR models.60–64 In particular, we

have shown that the efficiency of temperature-based

REMD results from a combination of enhanced sampling

and conformational sorting among the temperature

range.65 Statistical potentials are widely used in various

applications such as decoy discrimination,66–69 model

evaluation,70–74 and loop prediction.75,76 In a previous

study, we applied a recently developed statistical potential

(DFIRE)68 to the refinement of segments of proteins

with considerable success.77 The refinement protocol

proposed in this study has been tested using models gen-

erated for 10 small proteins. In total 14 models were gen-

erated with duplicate models being generated for 4 of the

10 proteins. The backbone RMSD of SSEs (SSE-RMSD)

for these models ranged from 1.76 to 2.73 Å. Another

seven models from the Continuous CASP Model Refine-

ment Experiment (CASPR) were also included in the

analysis. This extended the range of SSE-RMSD values to

between 1.33 and 4.14 Å. Overall, we find that REMD

was the most effective of the range of sampling strategies
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investigated and that a simple combination of two statis-

tical potentials appeared to be as accurate as two

ROSETTA-based scoring functions.53

METHODS

Test sets

Two sets of models have been used to test the refinement

protocol. The first set was specifically generated for this

study in order to effectively test the refinement protocol.

For these models it was required that a high-resolution

crystal structure be available for the target structure, that a

suitable template structure be available, that the proteins

be of manageable size, and that the native structure is sta-

ble in the force field used. To generate these models the fol-

lowing five-step procedure was used. First, 68 proteins

were selected from a database of 974 high-resolution

(<1.60 Å) crystal structures.77 Proteins were selected if

they had between 70 and 100 residues and there were no

gaps or missing atoms in the structures. Second, a list of

templates was identified for each protein and sequence

alignments generated using HMAP,32 a fold-recognition

method that combines sequence and secondary structure

profiles. Third, a structural model was built for each tem-

plate using Nest,78 a model building program that com-

bines rigid-body assembly and torsion-space optimization.

Fourth, the models were compared with the corresponding

experimental structures and only models for which the

SSE-RMSD was in the range 1.0–3.0 Å were retained. After

this stage only models for 17 proteins of the original 68

remained. Finally, a 5 ns MD simulation at 300 K starting

from the experimentally determined (native) structure was

performed for each of these 17 proteins. The GROMACS

package79–81 was used to perform the MD simulations

and the protocol is described in detail below in the section

on ‘‘Conformational sampling.’’ Only models for those pro-

teins for which the SSEs were very stable in the simulations

(SSE-RMSD < 1.5 Å) were retained (see Table I). For these

10 proteins the SSE-RMSD of the models ranged from 1.5

to 3.0 Å with respect to the native structure. For most

proteins only one model was obtained, however, for four

proteins 1cy5, 1mfg, 1r6j, and 1wm3 two models were

obtained giving 14 models in total. The second set of mod-

els against which the protocol was tested consisted of 7

CASPR targets obtained from http://predictioncenter.org/

caspR/. These proteins range in size from 70 to 138 resi-

dues. The coordinates for side chains not present in the crys-

tal structures of the CASPR targets were generated using

SCAP82 and gaps in the structure modeled using LOOPY.83

Together, the two sets provided a total of 21 models for 17

proteins (Table I). As can be seen from Figure 1 these pro-

teins have different topologies, secondary structure compo-

sitions, and shapes. Only one protein, 1k5n, contained any

disulfide bonds. In this case, the disulfide bond in the crystal

structure was satisfied in the predicted model.

Refinement protocol

The refinement protocol consisted of three phases: (1)

the identification and correction of local structural

errors, (2) the sampling of conformational space around

Table I
Properties of the 17 Proteins Used to Test the Global Refinement Protocol

PDB CI Description Exp. Resol. Nres SCOP Ncharge

a. Small, globular protein data set
1cy5a A Apaf-1 caspase recruitment domain X-ray 1.30 92 All a 23
1fm0 D Molybdopterin synthase subunit MoaD X-ray 1.45 81 a1b 27
1gxu A Hydrogenase maturation factor Hypf acylphosphatase-like domain X-ray 1.27 88 a1b 22
1k5n B beta-2-microglobulin, light chain X-ray 1.09 100 All b 21
1mfga A Erb-B2 interacting protein X-ray 1.25 95 All b 21
1opd A Histidine-containing protein X-ray 1.50 85 a1b 22
1r6ja A PDZ2 domain of syntenin X-ray 0.73 82 All b 0
1urr A Drosophila melanogaster acylphosphatase X-ray 1.50 97 a1b 6
1wm3a A Human SUMO-2 protein X-ray 1.20 72 a1b 21
1xmt A Putative acetyltransferase X-ray 1.15 95 a1b 1
b. CASPR data set
1xe1 A Hypothetical protein from Pyrococcus furiosus X-ray 2.00 91 All b 3
1vm0 A Hypothetical protein from Arabidopsis thaliana X-ray 1.80 103 a1b 3
1vla A Hydroperoxide resistance protein OsmC X-ray 1.80 138 a1b 0
1whz A Hypothetical protein from Thermus Thermophilus X-ray 1.52 70 a1b 4
1tvg A Human PP25 gene product, HSPC034 X-ray 1.60 137 All b 213
1xg8 A Hypothetical protein from Staphylococcus aureus X-ray 2.10 102 a/b 27
1o13 A Hypothetical NifB protein in FeMo-Co biosynthesis X-ray 1.83 107 a/b 0

The items listed include the PDB entry name, chain identifier, description of the biological function and source of the protein, structure determination method, resolu-

tion in Å, total number of residues, SCOP secondary structure class and net charge at a pH of 7.0. For the CASPR target proteins, gaps in the crystal structure were

completed using LOOPY and the coordinates of missing side chains generated using SCAP. The leader sequence was removed and selenomethionine (MSE) was changed

to methionine (MET).
aFor these proteins multiple starting models were tested in the refinement (see Table II).
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the original model using REMD (or other MD proce-

dures), and (3) the selection of native-like structures using

a variety of statistical potentials and scoring functions.

Local structural evaluation and correction

The purpose of this step was to identify and correct

local structural errors that occurred in side chains, loops,

and SSEs. First, the local quality of the model was

assessed using two statistical potentials and an empirical

energy function each of which provide a normalized

quality score per residue. These were the DFIRE poten-

tial,68 an inverse Born radius (IBR)-based environmental

potential, (Zhu and Honig, in preparation) and a tabu-

lated soft-core van der Waals potential.84 The per-residue

Figure 1
A cartoon representation of the crystal structures of the 17 proteins used to test the global refinement protocol. PDB entry names 1a. 1cy5; 1b. 1fm0; 1c. 1gxu; 1d. 1k5n;

1e. 1mfg; 1f. 1opd; 1g. 1r6j; 1h. 1urr; 1i. 1wm3; 1j. 1xmt; 1k. 1xe1; 1l. 1vm0; 1m. 1vla; 1n. 1whz; 1o. 1tvg; 1p. 1xg8; and 1q. 1o13.
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quality score was plotted against residue number and

structural details were inspected visually for residues with

scores above 2.0. Side chains, loops, and segments

deemed to be problematic were remodelled without refer-

ence to the native structure. Side chains were repacked

using SCAP,82 loops remodeled using LOOPY83 and alter-

native SSE conformations were generated using SegSam.77

The local quality of the resulting structures was then reval-

uated to ensure an improvement in the quality of the

model. Finally, the entire model structure was energy mini-

mized (EM) using minimize.x within the TINKER pack-

age.85 For this minimization an all-atom OPLS force field

was used together with an implicit solvation model that

combines mAGB model86,87 and a surface term.88

Conformational sampling

After local refinement, the 21 models were simulated

using REMD in explicit water using a modified version

of the GROMACS package.79–81 In the REMD

scheme,61 a number of independent simulations (rep-

licas) are performed simultaneously at temperatures

ranging from T1 to TM, where M is the number of repli-

cas. At regular intervals, the temperatures of neighbour-

ing replicas i and j are exchanged according to the

following Metropolis criterion:

accði ! jÞ ¼ minð1; expfðbi � bjÞðEi � EjÞgÞ ð1Þ

where b is the reciprocal temperature, 1/kBT, with kB the

Boltzmann constant T, the temperature (K) and E is the

potential energy of the system. By allowing replicas to

explore a range of temperature space, REMD enables the

system to cross energy barriers and access regions of con-

formational space that would be rarely sampled at stand-

ard temperatures.

The GROMOS96 43a1 force field89,90 was used in all

simulations. The protonation state of the ionizable amino

acids was set appropriate for pH 7.0 assuming standard

pKas. No counter-ions were added to neutralize the sys-

tem. Each model was solvated in a rhombic dodecahe-

dron box using the SPC water model.91 The minimum

distance between the solute and the wall of the unit cell

was 10 Å. A twin-range method was used to calculate the

nonbonded interactions. Interactions within the short-

range cutoff of 9 Å were updated every step while inter-

actions within the long-range cutoff (14 Å) were updated

every 5 steps together with the pairlist. A reaction field

correction92 was applied to the electrostatic interactions

beyond 14 Å, using a dielectric constant for water of 78.

Covalent bonds in the proteins were constrained using

the LINCS algorithm93 and the geometry of the water

molecules was constrained using the SETTLE algo-

rithm.94 A time step of 2 fs was used. The protein-water

system was first minimized using the steepest descent

method and then equilibrated by performing a 100 ps

MD simulation with positional restraints on the heavy

atoms of the protein. The restrained MD simulations

were performed at a constant temperature of 300 K and

a constant pressure of 1 bar by coupling to an external

heat and an isotropic pressure bath.95 In the REMD sim-

ulations, the target temperatures for the replicas were

determined between 280 and 320 K, using the method

proposed by Garcia and Sanbonmatsu.62 For each pro-

tein model, the solvated system was equilibrated at five

temperatures, T 5 275, 287, 300, 312, and 325 K. The

averaged energies E from the five simulations were fitted

by a polynomial of T. Finally, Eq. (1) was solved itera-

tively between 280 and 320 K using P(exchange) � 0.20.

The 21 protein models with different numbers of replicas

(Table III) were subjected to 5 ns REMD at constant (N,

V, T) with exchanges attempted every 1 ps. Snapshots

were stored every 2.5 ps, which led to a total of 2000

conformations per replica (temperature). The conforma-

tions corresponding to the five lowest temperatures (e.g.

for 1fm0 T 5 276.4, 279.5, 282.6, 285.7, 288.9; for 1vm0

T 5 276.4, 278.0, 279.5, 281.1, 282.7) were subjected to

further analysis.

Two additional sampling protocols based on conven-

tional MD were also tested in addition to the REMD

approach and served as controls. The first was a single

long simulation 50 ns in length. The second was a series

of short independent simulations (10 3 5 ns). The con-

trol simulations were performed at 300 K using the same

parameter settings as those used in the REMD simula-

tions. Different initial velocities were, however, generated

for each simulation.

Model selection using statistical potentials

The main scoring function used for model selection,

RAPDF/HB, was a combination of two statistical poten-

tials: a modified version of the RAPDF potential that

uses the conditional probability reference state proposed

by Samudrala and Moult66 together with the distance

binning procedure of DFIRE by Zhou and Zhou68 and a

modified version of the orientation-dependent hydrogen

bonding potential of Kortemme et al.96 Both RAPDF

and DFIRE are atom-based, distance-dependent pairwise

potentials that can be used to evaluate atom-atom inter-

actions within a given protein structure. In our imple-

mentation of the hydrogen bonding potential, 13 hydro-

gen bonding patterns were explicitly defined according to

the secondary structure type and location (backbone or

side chain) of the donor and acceptor. A potential-of-

mean-force (PMF) table was then derived for each of

these patterns based on the statistics of a database of

high-resolution crystal structures. Note, these statistical

potentials do not distinguish between cysteines that are

protonated and those that form disulfide bonds. The

physical energy functions used in this study do distin-

guish between these two cases. The contributions of the

two scores were combined using a scaling factor of 1.0

Refining Homology Models of Proteins
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for the RAPDF score and a factor of 5.0 for the hydrogen

bonding score. These weight factors were chosen so that

the two terms made a comparable contribution to the

final score. They were not optimized to give the best per-

formance on this dataset.

Two alternative scoring functions were taken from the

ROSETTA package and tested for comparison (http://

depts.washington.edu/ventures/UW_Technology/Express_

Licenses/Rosetta). The all-atom form of the ROSETTA

scoring function53 contains seven terms, including rama

(Ramachandran torsion preferences), LJ (Lennard-Jones

interactions), hb (hydrogen bonding), solv (solvation),

pair (residue pair interactions such as electrostatics and

disulfides), dun (rotamer self-energy), and ref (unfolded

state reference energy). One of the functions tested was

the default ROSETTA score containing all the energy

terms as described by Kuhlman et al. (ROSETTA_soft).97

In this function, the softened Lennard-Jones (LJ) poten-

tial option was used to compensate for the differences

between the atom radii used in the MD simulations

(GROMOS96 43a1) and those used in ROSETTA

(CHARMM2298). As an alternative, a subscore of the

ROSETTA scoring function (‘‘bk_tot’’ in the ROSETTA

output) was used to evaluate the models (ROSET-

TA_sub). This function contains the same energy terms

as in ROSETTA_soft except for the rama and ref terms.

In addition, the normal as opposed to the softened LJ

potential was used. The standard weighting factors were

used for all terms in this function.

In the model selection, only conformations present in

the five lowest temperatures (starting from �280 K) of

the REMD simulation were subjected to the model selec-

tion by the RAPDF/HB, ROSETTA_soft and ROSETTA_

sub scores. The SSE-RMSD was used to evaluate the rela-

tive effectiveness of the three scores in selecting the most

appropriate models. Note that the SSEs were as defined

as in the corresponding crystal structure.

RESULTS

Local structural evaluation and correction

In Table II the SSE-RMSD values and the percentage

of problematic residues before and after local structure

correction are listed. In general, local structure correction

did not have a major effect on the SSE-RMSD (�0.1 Å)

Table II
Structural Properties of the 21 Models Used to Test the Global Refinement Protocol and the Corresponding Modeling Information

Model Template Exp. Seq. ID RMSD0
a Perc0

b PercSSE0
c Local refinement d RMSD1

a Perc1
b

a. Small, globular protein data set
1cy5_1 1c15 NMR 100 2.73 2.2 1.1 EM 2.77 0.0
1cy5_2 3ygs X-ray 20 1.89 8.6 6.5 L, SC, EM 1.90 1.1
1fm0 1v8c X-ray 26 2.19 29.6 18.5 L, SC, EM 2.23 3.7
1gxu 1ulr X-ray 37 2.11 30.7 21.6 L, SC, EM 1.81 6.8
1k5n 1je6 X-ray 16 2.11 13.0 3.0 L, SC, EM 2.05 1.0
1mfg_1 1qav X-ray 28 2.44 13.7 0.0 L, SC, EM 2.41 2.1
1mfg_2 1qlc NMR 36 1.77 35.8 5.3 L, SC, EM 1.73 2.1
1opd 1k1c NMR 42 2.57 61.2 43.5 L, SC, SG, EM 3.22 3.5
1r6j_1 1ry4 NMR 28 2.15 7.3 2.4 SC, EM 2.15 1.2
1r6j_2 1d5g NMR 17 1.76 17.1 7.3 EM 1.77 1.2
1urr 1y9o NMR 29 2.00 15.5 8.2 SC, EM 2.01 1.0
1wm3_1 1c3t NMR 16 2.55 6.9 5.6 L, SC, EM 2.38 0.0
1wm3_2 1l7y NMR 13 1.79 18.1 9.7 EM 1.63 0.0
1xmt 1r57 NMR 26 2.40 31.6 23.2 L, SC, EM 2.69 4.2
b. CASPR data set
1xe1 — — — 1.33 11.0 7.7 EM 1.26 5.5
1vm0 1h0x X-ray — 3.05 13.6 8.7 SC, EM 3.00 0.0
1vla 1ml8 X-ray — 2.25 3.6 1.4 EM 2.26 5.8
1whz — — — 1.75 31.4 10.0 SC, EM 1.69 2.9
1tvge 1jhj, 1eut, 1czs, 1kex, 1k12 X-ray — 4.14 33.6 21.9 SC, EM 4.29 7.3
1xg8e 1h75, 1b4q, 1ego, 1eej X-ray — 3.03 83.3 55.9 L, SC, SG, EM 4.68 10.8

NMR
1o13 1eo1 NMR — 1.84 18.7 8.4 SC, EM 1.90 1.9

The items listed include the model name, PDB entry name of template(s), structure determination method for the template(s), sequence identity, SSE-RMSD and per-

centage of problematic residues before the local refinement, percentage of problematic SSE residues before the local refinement, modeling operations taken in the local

refinement, SSE-RMSD and percentage of problematic residues after the local refinement and energy minimization. ‘—’ denotes that no information is available.
aRMSD denotes SSE-RMSD, the backbone RMSD of the secondary structure elements.
bPerc is the percentage of problematic residues with a score higher than 2.0 from any of the three scoring functions.
cPercSSE0 is the percentage of problematic residues within SSEs with a score higher than 2.0 before the local refinement.
dThe modeling operations include L, loop prediction; SC, side chain prediction; SG, generation of alternative conformations for the structural segments containing

secondary structure elements. EM, energy minimization of the entire model structure.
eFor these two CASPR targets the model was built using fragments of multiple templates.
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but significantly reduced the percentage of residues with

a quality score greater than 2.0. In cases where a high

percentage of residues (>30%) were problematic such as

for 1opd, 1xmt, 1tvg, and 1xg8, the SSE-RMSD of the

model did increase after local structure correction and

EM. This reflects the low quality of the models and the

difficulty of performing manual adjustments in such

cases. For the models of 1gxu and 1whz, which

had �30% problematic residues, the SSE-RMSD was

improved after model correction and minimization.

These two models also show marked improvement after

conformational sampling using REMD and model selec-

tion. In most cases the SSEs were held fixed during the

process of local structural correction. However, for the

models 1opd and 1xg8, in which 61.18% and 83.33% of

the residues were considered problematic, respectively,

SegSam77 was used to generate alternative conformations

for those SSEs that contained a high percentage of resi-

dues with quality scores >2.0. Conformations with

improved quality scores were selected but, as indicated

by the SSE-RMSD values in Table II, such adjustments

resulted in a deterioration of the model in a global

sense.

To illustrate how the local structural errors were iden-

tified and corrected the potential scores for the model of

1urr are plotted in Figure 2 before and after local struc-

ture correction. Two spatially related regions, residues

22–24 and residues 47–49, were considered problematic.

As can be seen in Figure 3a residue R23 (charged) is bur-

ied within the protein in contact with two hydrophobic

residues, F22 and V47. After repacking [Fig. 2(b)], R230

is exposed to water and is roughly in the same position

and orientation as in the native conformation. In addi-

tion, there is a small rotation of the benzene ring of F22

resulting in the orientation of both F22 and V47 becom-

ing more native-like. Another region, residues 67–70 is

marked by high van der Waals scores but not recognized

by the other two potentials, suggesting a simple violation

in local geometry. Therefore, no reconstruction but only

the minimization was performed that resulted in a large

improvement in the van der Waals scores.

Conformational sampling with REMD

The main criterion used to evaluate the sampling effi-

ciency was the SSE-RMSD with respect to the native struc-

Figure 2
The per-residue local quality score of the model for protein 1urr (PDB entry name) is plotted as a function of residue number. Three normalized, residue-based scoring

functions are used in the local quality assessment including the DFIRE potential, inverse Born radius (IBR)-based environmental potential and tabulated soft-core van der

Waals potential. The local quality scores before and after side chain repacking are shown in magenta and black, respectively. The dotted line in blue denotes the cutoff

used for the local quality score, a value of 2.0.
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ture (see Table III). For 15 out of the 21 cases investigated

the lowest SSE-RMSD (RMSDmin) was more than 0.5 Å

lower than that of the starting structure (RMSDinit). On

average the improvement of SSE-RMSD was 0.82 Å. This

suggests that REMD is an effective method to obtain near-

native conformations. Conformations that were more than

0.2 Å closer to the native structure than the starting struc-

ture were found for all models except 1vla. The structure

1vla corresponds to the hydroperoxide resistance protein

OsmC. OsmC is a domain-swapped dimer in which the

two monomers are arranged head-to-head.99–101 In the

absence of the second monomer there is a significant

change in the orientation of the N-terminal domain with

respect to the large C-terminal domain.

The range of SSE-RMSD values observed as indicated by

the difference between the values of RMSDmin and

RMSDmax shows that a wide variety of conformational

states were sampled in the REMD simulations. The per-

centage of conformations closer to the native state than the

initial model varied greatly between the different models.

In one case (1fm0) the majority of the conformations

sampled (�64%) were closer to the native structure than

the starting structure. However, on average only 22.3% of

the conformations sampled had SSE-RMSD values lower

than that of the starting structure. For 5 of the 21 cases less

than 10% of the conformations sampled were closer to the

native state than the original model.

Factors affecting REMD sampling

The model of 1mfg-1 was used to illustrate possible

effects of the simulation protocol on the sampling effi-

ciency. This model was selected because of its poor

enrichment in lower SSE-RMSD conformations (3.0%).

Three REMD protocols were tested. First, to determine

the reproducibility of the results the simulations were

rerun with different initial random atomic velocities. The

temperature series were the same as in the original

REMD simulation. In the second and third protocols,

four additional replicas were used to either extend the

range of temperature or reduce the temperature gap

between replicas. The temperature series for these two

protocols were derived using the same rules as for the

standard protocol. The lowest SSE-RMSD found using

the three protocols were 2.13, 2.16, and 2.03 Å, while the

enrichment of lower SSE-RMSD conformations was

4.4%, 7.1%, and 8.0%, respectively. The increase in the

number of replicas appears to have had the greatest effect

on sampling.

To illustrate possible effects of the initial conformation

and the secondary structure composition of the protein

on the extent of sampling in a REMD simulation, a series

of simulations were performed starting from the native

structures of three proteins, 1cy5, 1urr, and 1k5n, using

the same protocol that was used during the refinement

Figure 3
The superposition of the native structure for protein 1urr (PDB entry name) and the model structure before and after side chain repacking is shown in 3(a,b),

respectively. The residues 22–24 and 47–49 are represented as a stick model, while the protein body is represented as a cartoon model in shadow. In the stick model the

carbon atoms of native structure are in yellow while the carbon atoms of model structure are in cyan. In the cartoon model the native structure is in gray while the model

structure is in green. The residue name and residue number are only labeled for those of native structure except for R23, for which the corresponding residue in the model

structure is labeled as R230.
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of models. The three proteins simulated have distinct

secondary structure compositions. As can be seen from

Table I and Figure 1, 1cy5 is an all a protein, 1urr is an

a1b protein and 1k5n is an all b protein. In addition,

1k5n has a disulfide bond that holds the two planar b-
sheets tightly against each other. The mean SSE-RMSD

values were 1.47, 0.94, and 0.84 Å, and the standard

deviation of SSE-RMSD value was 0.69, 0.24, and 0.14 Å

for 1cy5, 1urr, and 1k5n, respectively. For 1cy5 and 1urr

the range of conformations sampled is much smaller

when starting from the native conformation than when

starting from the model (see Table III). In the case of

1k5n, the sampling is clearly affected by the disulfide

bond in both the native structure and the model. The

effect of the secondary structure composition, if any, was

small. The results suggest that on the time scale investi-

gated the conformations sampled using REMD are largely

determined by the initial conformation of the system.

Comparison of REMD and other
MD-based protocols

The efficiency of two other MD sampling protocols

was also investigated. The sampling protocols consisted

of either a single long simulation or multiple short simu-

lations. Table IV compares the results obtained using

these approaches to those obtained using REMD with

respect to two measures—the lowest SSE-RMSD and the

enrichment of conformations with SSE-RMSD values

lower than that of the original model. In the case of the

single 50 ns simulation, the results were poor. Less than

2% of the conformations sampled had lower SSE-RMSD

values than the initial model. Only in five cases 1gxu,

1mfg_2, 1r6j_2, 1wm3_2, and 1whz were a significant

number of conformations with SSE-RMSD values lower

than the original model sampled. Interestingly, in all of

these five cases the starting SSE-RMSD was below 2.0 Å.

Performing multiple short MD simulations was signifi-

cantly better than a single long trajectory. In 14 of the 21

cases, the lowest SSE-RMSD found in the multiple simu-

lations was more than 0.5 Å lower than the starting value

and on average 17.1% of conformations sampled had a

SSE-RMSD less than the starting model. A two-way anal-

ysis of variance (ANOVA) was used to examine if the dif-

ferences in the results obtained using multiple MD and

REMD were statistically significant. It was found that in

terms of the lowest SSE-RMSD sampled the difference

was not statistically significant (P 5 0.65). However, in

terms of the enrichment, the probability of the results

coming from the same distribution was only 5.0% (P 5
0.05) suggesting that REMD was still a more effective

approach.

Table III
RMSD Analysis of Structures Sampled by REMD Simulationa

Models No. Repli. RMSDinit RMSDmin
b RMSDmax RMSDave�std Perc. (%)

a. Small, globular protein data set
1cy5_1 16 2.77 1.77 7.40 3.33 � 0.97 34.1
1cy5_2 14 1.90 1.31 5.84 2.14 � 0.33 17.7
1fm0 14 2.23 1.12 3.32 2.09 � 0.38 63.8
1gxu 16 1.81 1.09 3.19 1.96 � 0.32 28.9
1k5n 20 2.05 1.69 2.66 2.15 � 0.15 29.7
1mfg_1 16 2.41 2.19 3.67 2.93 � 0.25 3.0
1mfg_2 16 1.73 1.16 4.04 2.09 � 0.48 20.6
1opd 16 3.22 2.32 5.32 3.43 � 0.53 39.3
1r6j_1 14 2.15 1.07 4.51 2.68 � 0.78 33.3
1r6j_2 14 1.77 1.32 3.40 2.17 � 0.33 12.3
1urr 18 2.01 0.96 3.99 2.61 � 0.69 21.0
1wm3_1 14 2.38 1.85 3.61 2.52 � 0.22 24.6
1wm3_2 14 1.63 1.05 3.90 2.33 � 0.48 7.5
1xmt 20 2.69 1.94 4.16 2.98 � 0.38 22.1
b. CASPR data set
1xe1 16 1.26 0.94 3.04 1.56 � 0.27 13.7
1vm0 26 3.00 2.50 9.20 4.03 � 1.01 9.5
1vla 18 2.26 2.20 7.21 4.01 � 0.82 0.0
1whz 16 1.69 0.75 3.82 1.98 � 0.72 41.8
1tvg 20 4.29 3.15 6.27 4.48 � 0.58 33.0
1xg8 18 4.68 3.88 8.65 6.03 � 0.91 6.8
1o13 18 1.90 1.51 3.49 2.48 � 0.38 5.3

The items listed include the model name, number of replicas used in REMD simulations, initial RMSD in the REMD simulation,

minimum and maximum RMSD that can be found in the REMD simulation, average RMSD (and standard deviation), and the

percentage of conformations that have lower RMSD than the starting structure.
aRMSD here denotes the SSE-RMSD, the backbone RMSD of secondary structure elements. Only conformations sampled in the 5

REMD simulations with the lowest temperatures were used in the calculation of items listed in columns 3–6.
bThe RMSD values that are at least 0.5 Å lower than the initial values are in bold.
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In Figure 4 the SSE-RMSD is plotted as a function of

the simulation time for three MD-based sampling proto-

cols. 1opd and 1whz were selected as illustrative examples

because they differ markedly in the quality of the initial

models. 1opd has relatively low quality with a SSE-

RMSD value of 3.22 Å while 1whz is a near-native model

with a SSE-RMSD of 1.69 Å. As can be seen from Figure

4, the three protocols exhibit very distinct patterns. The

apparent discontinuities in the RMSD in the REMD tra-

jectory (lowest temperature) correspond to exchanges of

the replica (conformation) with the one present at the

next higher temperature. In the case of 1opd, low-RMSD

conformations (<2.5 Å) are only sampled between 1 and

2 ns. In the case of 1whz near-native conformations are

sampled throughout the simulation. In addition to the

frequent exchange of conformations, a slow increase of

SSE-RMSD was observed for 1mfg_1, 1wm3_2, 1vla, and

1xg8, for which the percentage of lower-RMSD confor-

mations is below 10% (results not shown). In the single

long MD simulation, conformations tended to drift away

from sampling near-native states after a few to tens of

nanoseconds. This was observed for all models except

1mfg_2. In this case the SSE-RMSD decreased signifi-

cantly from 1.75 to 0.87 Å during the last 10 ns simula-

tion. Using multiple short MD simulations the range of

SSE-RMSD values explored was comparable to the

REMD simulations. However, an ANOVA analysis sug-

gested that statistically REMD was still better than multi-

ple short MD simulations with respect to the enrichment

in lower-RMSD conformations.

Selection of the best models

Table V shows the SSE-RMSD of ‘‘the best model’’

ranked by different scoring functions. The best model

was selected using the following procedure: First, the best

scoring model in each of the five lowest-temperature

REMD trajectories was determined. Then taking these

five models the one with the lowest SSE-RMSD was

selected as the best model. Using the combination of two

statistical potentials (RAPDF/HB) 11 models were

selected with a SSE-RMSD of at least 0.2 Å lower than

the starting value. In addition less improvement (<0.2

Å) was observed in six models. Using the ROSETTA_soft

score, seven models were selected with SSE-RMSD

decreased by more than 0.2 Å and six models with less

decrease of SSE-RMSD. ROSETTA_sub score yielded

Table IV
Comparison of Three MD-Based Sampling Protocolsa

Models

REMD 50 ns MD 10 3 5 ns MD

RMSDmin
b Perc. (%) RMSDmin

b Perc. (%) RMSDmin
b Perc. (%)

a. Small, globular protein data set
1cy5_1 1.77 34.1 2.59 0.0 1.66 23.6
1cy5_2 1.31 17.7 1.90 0.0 1.60 3.8
1fm0 1.12 63.8 1.87 0.3 1.26 43.9
1gxu 1.09 28.9 1.10 49.6 1.14 26.2
1k5n 1.69 29.7 1.85 1.9 1.58 41.6
1mfg_1 2.19 3.0 2.29 0.1 2.15 2.0
1mfg_2 1.16 20.6 0.87 93.4 0.95 37.7
1opd 2.32 39.3 2.91 1.9 2.61 12.0
1r6j_1 1.07 33.3 2.15 0.0 1.48 11.5
1r6j_2 1.32 12.3 1.23 70.9 1.03 21.7
1urr 0.96 21.0 1.91 0.0 1.18 8.8
1wm3_1 1.85 24.6 2.00 18.0 1.47 20.8
1wm3_2 1.05 7.5 1.22 1.1 1.00 10.7
1xmt 1.94 22.1 2.48 0.0 1.87 9.9
b. CASPR data set
1xe1 0.94 13.7 1.05 0.7 0.96 11.8
1vm0 2.50 9.5 2.70 0.4 2.64 2.19
1vla 2.20 0.0 2.26 0.0 2.25 0.0
1whz 0.75 41.8 1.16 17.3 0.65 24.8
1tvg 3.15 33.0 3.83 1.5 3.38 21.1
1xg8 3.88 6.8 4.60 0.0 3.87 10.6
1o13 1.51 5.3 1.80 0.0 1.42 11.8

The items listed include the model name, minimum RMSD that can be found in the simulation and the percentage of

conformations that have lower RMSD than the starting structure for three MD-based sampling protocols, which are

REMD, a single 50 ns MD simulation and ten 5 ns MD simulations with different initial atomic velocities.
aRMSD here denotes SSE-RMSD as in Table III. For the REMD protocol, only conformations sampled in the 5 REMD simula-

tions with the lowest temperatures were used in the calculation of items listed in columns 2 and 3. For the other two MD-

based protocols, all conformations sampled in the simulation(s) were used in the calculation of items listed in columns 4 to 7.
bThe RMSD values that are at least 0.5 Å lower than the initial values are in bold.
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better results than ROSETTA_soft: nine models were

improved by at least 0.2 Å and seven models by less than

0.2 Å. On average, the improvement of the SSE-RMSD

with respect to the starting value was 0.21, 0.05, and 0.24

Å for RAPDF/HB, ROSETTA_soft and ROSETTA_sub,

respectively. A two-way ANOVA test shows that the

results from the three scores do not differ significantly (P

5 0.12). This suggests that a simple combination of two

statistical potentials is as effective as the ROSETTA

energy function in terms of model selection.

On the basis of the initial ranking generated using the

RAPDF/HB function, the 100 top-scoring REMD snap-

shots for each of five replicas used (500 structures in

total) were selected and subjected to the 1000 steps of

EM using L-BFGS truncated-Newton optimization algo-

rithm in conjunction with the OPLS all-atom force field

and mAGB/SA solvation model.86,87 The minimized

structures were re-ranked by the RAPDF/HB function.

The SSE-RMSD of the best model selected by the

same procedure as described above is listed for each

model in Table V. Using the RAPDF/HB score in the final

selection, the SSE-RMSD was improved for 14 models

with respect to that before the minimization. However,

the number of models that have at least 0.2 Å SSE-

RMSD improvement remained the same, 11, after the

minimization.

Correlation between scoring functions
and SSE-RMSD

Figure 5 shows the RAPDF/HB, ROSETTA_soft and

ROSETTA_sub scores plotted against the SSE-RMSD for

the conformations taken from the REMD simulation at the

lowest temperature investigated. Four models are presented

to illustrate the types of correlation observed. Although the

different scoring functions appear similarly effective for

model selection, RAPDF/HB shows a better correlation

with SSE-RMSD than do the two ROSETTA functions.

Furthermore, the correlation shown by ROSETTA_soft

appears better than ROSETTA_sub. In the case of 1opd (a

low-quality model) the correlation is relatively poor for all

scoring functions except RAPDF/HB. In the latter case a

gap in the energy separates the two conformations with the

lowest RMSD from the remainder. However, a number of

high-RMSD conformations became energetically more

favorable after EM. This led to the selection of a structure

with a SSE-RMSD of 3.27 Å using RAPDF/HB. In the case

of 1mfg_1, 1r6j_1, 1r6j_2, 1xmt, and 1tvg negative correla-

tions between the energy and RMSD are observed. The

case of 1r6j_2 is shown in Figure 5. Although it is unclear

what causes the correlations to be negative, this problem

certainly has affected the results of model selection (Table

V). The case of 1vla deserves special mention as this

Figure 4
A plot of the SSE-RMSD as a function of simulation time for the three MD-based sampling protocols and two models, 1opd and 1whz. The REMD trajectory at the

lowest temperature is plotted in (a,d), respectively. The single 50 ns MD trajectory is plotted in (b,e), respectively. The first five of the ten 5 ns MD trajectories are plotted

in (c,f), respectively.

Refining Homology Models of Proteins

PROTEINS 1181



protein was refined as a monomer but in fact forms a do-

main-swapped dimer. From Table IV it can be seen that

using the three MD sampling protocols tested no confor-

mations with lower SSE-RMSDs than the starting model

were sampled. Nevertheless, from Figure 5 it can be seen

that there is in fact a very weak correlation between the

RAPDF/HB score and the SSE-RMSD (correlation coeffi-

cient 0.28). No correlation was found using the ROSETTA

functions. The final example, 1whz, shows the highest cor-

relation coefficient, 0.63, of all the models tested. From

Table V it can be seen that after EM there was a further

improvement in the SSE-RMSD from 0.91 to 0.79 Å for

this model. Positive correlations were observed for the ma-

jority of the models using the RAPDF/HB function. After

1whz the best correlation between the energy and the SSE-

RMSD was observed for 1fm0, which also yielded the

best sampling result in terms of percentage of low-RMSD

conformations.

Scoring of the native conformations

As shown in Table III, for 15 out of the 21 models

the lowest SSE-RMSD sampled by REMD is on average

0.82 Å lower than that of the starting structure. How-

ever, as shown in Table V the scoring functions investi-

gated here had only very limited ability to identify con-

formations with the lowest SSE-RMSD values. This

raises the question of whether these scoring functions

could recognize the native structure. To address this

issue, the RAPDF/HB score for native structure of each

of the 17 proteins was calculated and compared to the

score obtained for the REMD conformation that had

the lowest SSE-RMSD and that had the lowest RAPDF/

HB score (Table VI). In all cases the native structure

had a significantly lower score than any of the struc-

tures sampled in the REMD simulations. This demon-

strates that the RAPDF/HB score could in principle be

used to identify near-native structures. However, the

structures with the lowest SSE-RMSD values were not

ranked as the most native-like structure by the poten-

tial. A similar analysis performed using the ROSETTA

functions yielded similar results (data not shown). Sta-

tistical potentials such as RAPDF/HB and ROSETTA are

derived from high-resolution crystal structures. These

structures are often solved using data obtained at cryo-

Table V
RMSD of Models Selected by Different Scoring Functionsa

Models RMSDinit RMSDmin RAPDF/HBb ROSETTA_softb ROSETTA_subb RAPDF/HBEM
c

a. Small, globular protein data set
1cy5_1 2.77 1.77 2.34 (5) 2.29 2.14 2.17
1cy5_2 1.90 1.31 1.51 (4) 1.39 1.64 1.44
1fm0 2.23 1.12 1.33 (5) 1.46 1.35 1.25
1gxu 1.81 1.09 1.31 (2) 1.59 1.45 1.29
1k5n 2.05 1.69 2.00 (1) 2.29 2.06 1.82
1mfg_1 2.41 2.19 2.90 (0) 2.67 2.31 2.53
1mfg_2 1.73 1.16 1.21 (5) 1.61 1.53 1.42
1opd 3.22 2.32 2.61 (2) 2.90 3.41 3.27
1r6j_1 2.15 1.07 1.83 (2) 2.08 1.24 1.33
1r6j_2 1.77 1.32 2.13 (0) 1.79 1.62 1.81
1urr 2.01 0.96 1.59 (1) 2.35 1.03 1.55
1wm3_1 2.38 1.85 2.20 (3) 2.26 2.26 2.30
1wm3_2 1.63 1.05 1.35 (1) 1.73 1.71 2.15
1xmt 2.69 1.94 3.20 (0) 3.18 2.52 2.91
b. CASPR data set
1xe1 1.26 0.94 1.05 (2) 1.17 1.17 0.87
1vm0 3.00 2.50 2.98 (1) 3.00 2.64 2.84
1vla 2.26 2.20 2.26 (0) 2.26 2.29 2.35
1whz 1.69 0.75 0.91 (5) 1.00 1.00 0.79
1tvg 4.29 3.15 4.38 (0) 3.48 4.21 4.09
1xg8 4.68 3.88 4.50 (2) 5.36 5.36 4.97
1o13 1.90 1.51 1.78 (2) 2.96 1.88 2.14

The items listed include the model name, initial RMSD in the REMD simulation, minimum RMSD can be found in the

REMD simulation, RMSD of the best model ranked by RAPDF/HB score, two ROSETTA scores and RAPDF/HB score after

energy minimization.
aRMSD here denotes SSE-RMSD as in Table III. The RMSD values that are at least 0.2 Å lower than the initial values are in

bold.
bFor these three scoring functions, the best model was selected using the following procedure. First, the best scoring model in

each of the 5 REMD trajectories at the lowest temperatures was determined by a given scoring function. Then taking these five

models the one with the lowest SSE-RMSD was selected as the best model. Note that for the RAPDF/HB scoring function the

number of models with lower SSE-RMSD than the initial values is listed in parentheses.
cIn the RAPDF/HBEM scoring scheme, the 100 top-scoring structures ranked by the RAPDF/HB function in each of 5 replica simula-

tions used (a total of 500 structures) were subjected to energy minimization. The RAPDF/HB scores were then calculated for the mini-

mized structures. The SSE-RMSD of the best model selected by the same procedure as described above is listed in the last column.
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genic temperatures. In addition the rotameric states of

the side chains, bond angles and dihedral angles are

usually constrained to ideal or equilibrium values. As a

consequence, these potentials are weighted toward fine

details of side chain packing and hydrogen bond geo-

metries and perform less well when scoring conforma-

tions from molecular dynamics simulations that contain

thermal noise and which should satisfy the experimental

data only as an average over a representative ensemble.

It should also be noted that in this work the analysis is

based on conformations with low SSE-RMSD values

whereas the scoring of the structures was based on the

entire molecule. Thus, while the SSEs in the conforma-

tions selected were native-like, other regions of the pro-

tein may have transiently adopted less favorable confor-

mations. There are other possibilities such as the native

well on the conformational free energy landscape not

being directly accessible from these particular near-

native models. In this case the use of alternative sam-

pling methods such as soft-core van der Waals poten-

tials during the REMD simulations or Hamiltonian

REMD102–104 may be more effective than the temper-

ature REMD alone.

DISCUSSION

The questions that can be addressed using protein

structure prediction techniques depend on the quality of

predicted models.6 Although there has been significant

progress in structure prediction techniques over the last

decade, two crucial problems—structure refinement and

model assessment have still not been solved. As men-

tioned earlier, it seems reasonable to partition the struc-

ture refinement process into two phases: local refinement

which primarily involves the correction of errors in side

chain packing or within loops and SSE and global refine-

ment which aims at resolving differences in the overall

fold of the molecules. These two phases require different

strategies and techniques and are normally performed

sequentially.105

The problem of detecting local structural errors was

addressed more than a decade ago with statistical poten-

tials such as Verify3D70,71 and Prosa.72,73 Since then, a

number of statistical potentials have been developed to

evaluate protein structures in atomic detail.66–69,74

Recently, machine-learning techniques have been used to

combine various features such as structural properties106

Figure 5
The correlation of selection function score and SSE-RMSD for three scoring functions and four models, 1opd, 1r6j_2, 1vla, and 1whz. The correlation of RAPDF/HB score

and SSE-RMSD is plotted in (a,d,g,j), respectively. The correlation of ROSETTA_soft score and SSE-RMSD is plotted in (b,e,h,k), respectively. The correlation of

ROSETTA_sub score and SSE-RMSD is plotted in (c,f,i,l), respectively.
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and statistical potentials107 as input to predict local

model quality. In the current work, the local quality of

the model was first assessed using three normalized, resi-

due-based scoring functions, of which two are based on

recently derived statistical potentials68 (Zhu and Honig,

in preparation). These three scoring functions used in

combination appear to be sufficient to identify and

address most of the local errors in the models tested. The

local structural errors identified in the models were asso-

ciated with the packing of side chains, loops, and SSEs.

The first two types of error could be readily corrected

using existing methods.82,83 The errors within SSEs were

more difficult to address as changes in the SSEs directly

affected the global fold. In this work a combination of

local sampling77 with manual adjustment was used in an

attempt to correct apparent errors in SSEs. In general,

these changes only lowered the overall quality of the

model. This work together with other recent studies on

the SSE refinement,77,108,109 suggest that an automated

procedure is preferable to manual adjustment during

local structural refinement.

The global refinement of structural models of proteins

remains a major challenge. Although progress has been mar-

ginal, a number of recent studies have attempted to address

this problem using different approaches.46,47,57,110 There

are two fundamental challenges in global refinement: (1)

efficiently sampling the available conformational space and

(2) selecting near-native conformations. In this study, tem-

perature-based REMD60,61 was the primary method used

to sample the conformational space surrounding the initial

model. REMD allows exchanges between systems simulated

at a range of temperatures. In principle this enables the sys-

tem to cross energy barriers that would not be possible to

cross at lower temperatures. Of equal importance on short

time scales, REMD acts to sort a range of independent simu-

lations giving increased weight to low-energy conforma-

tions.64 The sampling efficiency of REMD was compared

with a single extended simulation and a series of short simu-

lations of equivalent length. Although REMD performed

best of the three strategies investigated, it was only margin-

ally more efficient than performing multiple short MD sim-

ulations. This suggests that on the time scale simulated the

potential for REMD to enhance barrier crossings was not

significant. One possibility to improve the sampling effi-

ciency might be to include more high-temperature replicas,

in this case, however, it is necessary to also include structural

restraints to avoid complete unfolding as proposed by Chen

and Brooks.50 In their work, REMD simulations on a

broader range of temperature (270–600 K) were used to-

gether with dihedral and distance restraints to maintain the

SSEs and overall topology during the refinement. Another

possibility may be to use models based on alternative

sequence alignments generated from various procedures as

replicas in the REMD simulation. REMD provides a general

framework through which a range of alternative sampling

approaches can be incorporated into refinement calcula-

tions,111,112 however further studies are required to dem-

onstrate that REMD truly enhances the sampling of native-

like conformations given the limitations in the available

force fields.113,114

Even if near-native conformations can be sampled effi-

ciently, the question of how to identify the near-native

conformations from a large ensemble of low-energy alter-

natives remains. Scoring functions must be both fast and

accurate. Thus while energy functions based on molecu-

lar mechanics force fields in combination with an

implicit description of solvation effects might in principle

be of sufficient accuracy to discriminate native from

non-native conformations,115 such approaches require

extensive optimization of protein structures prior to scor-

ing, which is computationally expensive. Statistical poten-

tials in contrast are fast and simple to implement but can

be sensitive to slight deviations from ideal geometries. In

this study we compared a combination of two statistical

potentials (RAPDF/HB)66,96 to alternative functions

from ROSETTA. The use of RAPDF as the primary scor-

ing function was based on the observation that RAPDF

was more effective at discriminating native from non-

native structures obtained from the MD simulations

while DFIRE was more effective at discriminating

between models generated in the course of structure pre-

diction and modeling.77,107,116 We believe this differ-

ence stems from the differences in their respective refer-

ence state, which relates to how a random distribution is

Table VI
RAPDF/HB scores of native structure and conformations sampled by REMD

Models Enative Emin Elrms

a. Small, globular protein data set
1cy5_1 24054 23124 23055
1cy5_2 24054 23268 22989
1fm0 22848 22307 22130
1gxu 23297 22542 22314
1k5n 23084 22319 21982
1mfg_1 22633 22330 21901
1mfg_2 22633 22294 22002
1opd 22850 22216 21970
1r6j_1 22539 22052 21938
1r6j_2 22539 21902 21666
1urr 23156 22529 22074
1wm3_1 22588 22066 21568
1wm3_2 22588 21963 21746
1xmt 23357 22227 21656
b. CASPR data set
1xe1 22458 21934 21794
1vm0 23642 22874 22514
1vla 24843 23930 23639
1whz 22894 22333 22056
1tvg 23703 22923 22253
1xg8 23122 22084 21670
1o13 23740 22771 22264

The items listed include the model name, RAPDF/HB score of the native structure

for this model, the lowest RAPDF/HB score of REMD-generated structure and

RAPDF/HB score of the lowest SSE-RMSD structure sampled in the REMD simu-

lation.
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defined in the derivation of the statistical potential. Our

results also suggest that the selection function must be

compatible with the sampling protocol in order to

achieve the best performance. Incorporation of the

hydrogen bonding potential was highly effective in

improving the RMSD results. Together, the RAPDF and

hydrogen bonding potentials constituted a simple but

effective scoring function which could potentially be used

as the basis to develop a more sophisticated scoring func-

tion. The results from the two ROSETTA functions

examined are varied, ROSETTA_soft showed the better

correlation between energy and RMSD but was less effec-

tive in selecting the conformations with the lowest

RMSD. In this function, the rama term that accounts for

the preference of backbone dihedrals and the softened LJ

term that accounts for atomic clashes in modeling

appeared to yield inappropriate rankings when applied to

conformations generated using MD simulations.

Although each of the scoring functions could discrimi-

nate the native structure from alternative models, none

of the scoring functions tested could reliably identify

near-native structures sampled during the REMD simula-

tions. One explanation for this could be the sensitivity of

these potentials to thermal noise inherent in MD-gener-

ated structures. Another contributing factor could be that

the scoring functions were applied to the whole struc-

tures while the structural comparisons were based on the

SSE-RMSD which considers only a subset of backbone

atoms. Intuitively, a global quality measure that can take

into account both backbone and side chain informa-

tion117 may lead to better correlations, while the use of

coarse-grained statistical potentials that simplify side

chains118 may be an alternative approach. Independent

of the scoring function, it is also possible to improve the

model selection by using a structure-clustering algorithm,

which has been found to be useful in a number of stud-

ies in ab initio structure prediction119,120 and local

structural refinement.77 In our study, EM was found to

improve the RMSD results for only 60% of the models.

This might be due to the inconsistency of using a physi-

cal energy function to optimize the structures but a sta-

tistical potential to rank the minimized structures. The

physical energy function used also contains an electro-

static solvation term86,87 that will affect the structural

packing of charged and polar residues during minimiza-

tion. However, none of the statistical potentials used

include such solvation effects explicitly.

In addition to conformational sampling and model

selection, other factors may also play a role in structure

refinement. One factor is whether the protein forms part

of a larger complex. In this case, the model should be

refined in the multimeric state. However, this can be

extremely challenging and has yet to be properly

addressed in structure prediction. Recently, Grimm et al.

reported a benchmark study of dimeric threading and

structure refinement,56 in which three model dimers

under optimal conditions were refined. In each case the

two models were connected by a 30-glycine linker so that

methodology developed for single proteins (TASSER54)

could be applied. In our study, the refinement of the iso-

lated monomer of 1vla, which in reality forms a domain-

swapping dimer, was the only case in which conforma-

tions with lower SSE-RMSD values than the initial model

were not sampled during the REMD simulations. Simi-

larly, the scoring functions, which have been primarily

developed for single isolated proteins may have to be re-

evaluated for use with proteins removed from multimeric

complexes. Another factor that affects refinement, in par-

ticular the selection step, is the overall quality of the

model. In our study, the REMD protocol was an equally

effective sampling protocol for both sets of models. In

contrast the scoring functions appeared to perform better

on the non-CASPR models, for which the structure was

of higher quality. Overall the refinement of small, globu-

lar and near-native models was more successful than the

refinement of irregularly shaped larger models with rela-

tively low quality. This was particularly evident when the

RAPDF/HB function was used for selection. The only

two successful examples in the CASPR data set were 1xe1

and 1whz, which both are small, globular structures with

low starting RMSD values.

In summary, we have presented a simple but effective

strategy for refining homology models. A number of fun-

damental issues in structure refinement, such as confor-

mational sampling and model selection, have been inves-

tigated by testing alternative methods on a data set of 21

models with various qualities. We believe that the experi-

ence gained from this study will greatly facilitate the

design of more effective strategies for global refinement.
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