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The evaluation of the hyperfine interaction tensor 
components in molecular systems 

BY R. M. G O L D I N GA N D  L. C. STUBBS 

Department of Physical Chemistry, University of New South Wales, 
P.O. Box 1, Kensington, AT.8.W. 2033, Australia 

(Communicatedby D. P. Craig, lilR.8. -Received 28 July 1976) 

I n  this paper a general method is developed to evaluate the nine hyperfine 
interaction tensor components, AaB, arising from the electron orbital 
angular momentum and the electron spin dipolar-nuclear spin angular 
momentum interactions of an electron associated dominantly with one 
nucleus coupling with a nucleus with a non-zero magnetic moment, where 
the electronic wavefunction is described by a Slater-type orbital. The 
method handles long range and short range coupling including the free 
atom case. From the results the degree of non-coincidence of the principal 
axes of the g and A tensors and the n.m.r. shifts are evaluated. As an 
illustration the molecular system examined is a molecule containing a dl 
transition metal ion in a strong crystal field. 

The interactions of an electron and a nucleus with a magnetic moment with an 
applied magnetic field and the interaction between the electron and the nucleus 
may be represented by the spin hamiltonian 

Z = p u s . g . B - p , g N I . B + p N g , I . a . B + I . A . ~ ,  (1) 

where the g, a and A tensors may not necessarily be coincident nor symmetric. We 
shall examine the case when the first term in hamiltonian (1) is the dominant term 
and the third term is insignificant. We shall determine the degree of coincidence of 
the g and A tensors and the asymmetry of the A tensor for a one electron system. 
Hence, we shall develop a method whereby the nine A,! components may be 
calculated for any system where the electron-nuclear interaction is represented by 
the hamiltonian 

2'= 2g,pBpN(- i&I- rN x V/r%-S. I/r%+3(r,. s) r,. I/r~)p,,/47~. (2) 

In equation (2)  r, is the radius vector of the electron about the nucleus with nuclear 
spin angular momentum, I. 

The nine components of the hyperfine tensor will be calculated by equating the 
eigenvalues of the spin hamiltonian (1) to the eigenvalues of the appropriate 
hamiltonian for the molecular system including hamiltonian (2). Much of the work 
involved is in the evaluation of the two centre molecular hyperfine interaction 
integrals and the system we shall explore is shown in figure 1. 

[ 223 I 
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The electronic wavefunction $(lnz,) will be chosen as a Slater-type of the form 

McConnell & Strathdee (1959) gave a method of evaluating the integrals for the 
special case when the two nuclei lie along the z-axis. The operator was expressed as 
a function of R and r and the integration performed in the Oxyz system. However, 
the singular n.ature of the operator a t  the nucleus with the magnetic moment causes 
problems, and there is a 8-function type *contribution (Pitzer, Kern & Lipscomb 
1962). 

. electron 

------*Y 

electron bearing 
R nucleus 

FIGURE1 .  The coordina.te system. 

We shall evaluate these hyperfine integrals for the general case, namely when R 
can point anywhere in space, not necessarily along the x-axis. The corrections given 
to the results of McConnell & Strathdee (1959) by Pitzer et al. (1962) are automati- 
cally incorporated in our answer since the integration is performed in the ON xN yN xS 
system and the singularity a t  0, is easily handled. The hyperfine interaction 
integrals are evaluated by expressing the electron coordinate system Oxyx in the 
coordinate system 0, x, y,x, using the following identities : 

where 
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where r ,  is the smaller of R and r,, r ,  is the larger of R and rN and I,and K, are the 
modified Bessel functions. 

To illustrate the results we shall examine the case when the hyperfine interaction 
arises from the interaction of a d-electron in a strong crystal field with the nucleus 
with spin angular momentum. From a knowledge of the hyperfine interaction corn- 
ponents we shall determine the degree of non-coincidence of the g and A tensors. 
Also, in this paper we shall derive expressions for the n.rn.r. shift arising from this 
interaction which will lead to generalised results of our previous work on the 
pseudocontact contribution to the n.m.r. screening constant in dl transition metal 
ion complexes (Golding, Pascual & Vrbancich 1976; Golding, Pascual & Stubbs 

1976). 

Since we are examining the interaction of a d-electron centred a t  0 in a strong 
crystal field we shall express the required electronic wavefunctions as 

10= (2P7/3n)+yzexp( -Pr), 


17) = (2P7/3n)*zx exp ( -BY), ( 5 )  


15) = (2P7/3+ XY exp ( -Pr), 

where p = 2.2/ao. 

To evaluate the hyperhe interaction integrals, the integrand is expressed as a 
function of R and rN using equations (4a) and ( 4 b ) . For the radial part of the 
integrals we introduce, for convenience, the following notation 

rkL)(t)= 4P7(- R)L So" T % - ~ ~ ~ ( R ,rN) dr,. 

and 	 u,(t) = r(,4'(t), x,(t) = rg)(t), 

vn(t) = r(z'(t), yn(t)= r',o)(t), 

wn(t)= r6,2)(t), 

where t = 2pR. 


From the angular parts of the hyperfine interaction integrals we gain selection rules 

on n. The required radial integrals are listed in table I. The integrals are then readily 

evaluated. 


(a) Hyperfine interaction tensor components 

A dl system in a strong crystal field of octahedral symmetry results in a 2T, 
ground state. The spin-orbit coupling interactions and a crystal field component of 
lower symmetry results in a splitting of the 2T2ground state into three doubly spin 
degenerate energy levels E, (k = 1,2,3) where the eigenfunctions may be written as 
(Golding 1969) 

11Cl.i)= A k l l + ) + B k l c ~ ) + C k /  -It), 


I$;) = Akl  - l-)-Bkl[?)+Ckl I-). 
(7 )  
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Hence, the g tensor for each energy level E, is diagonalized and the principal g-values 
are given as 

sh",) = 2{Bi -2-AkCk+ J2Blc(Ak-Clc)), 

= 2{Bi 2Akck+ %/2Bk(Ak+ (8) 
9:;) = 2{2Ai -Bi). 
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The hyperfine interaction tensor components, Asp, are obtained from the solution of 
the following six simultaneous equations, namely 

C (Ai9)2= C (RLk))2, 
a a 

(AL$)2= C 
a a 

C = C (DLk))2, 
a a 

C A;:) A:;) = C ILk)Dp), 
a a 

A:;) AL2 = =C DLk)RLk), 
a a 

ALt)AiY = =C RP'Ip), 
a a 

where 

Rik'= 2 ~ N ~ B ~ K [ - 2 " / 2 B k ( C k - A k )  (51 lNa/rkIr) -g(ck+Ak)2 (51 Taz 15) 

++(Qk-Ak)2(rIqz Ir>+BE(51qzIC)+(Qi-Ai) (51 Tau Ir) 

-d2Bk(Ck +A k )  (51 Taa It)] PO/^^, 

The integrals are given in the appendices. 
When R lies along one of the coordinate axes the solution is chosen such that the 

A tensor is diagonal. A consistent set of solutions for all directions of the R vector 
in space is then AL",' = RLk), 

k )  - I(k)ALy - a 

Ack",)= DLk). 

Therefore, in general the A tensor is asymmetric. However, it follows that  a sym- 
metric tensor S can be constructed where 

( b )  N,m.r.pseudocontact shqt 

From a knowledge of the hyperfine interaction tensor components we may deter- 
mine the n.m.r. shifts arising from the electron-nuclear interaction represented by 
equation ( 2 )when the n.m.r. results of the paramagnetic system are determined in 
liquid solution. The principal values uzz, (T,, and (T,,of the n.m.r. screening tensor, 
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a, are determined by considering the magnetic field, B, interaction as parallel to the 
x, y and x axes and averaged assuming a Boltzmann distribution. It follows that the 
contribution to the n.m.r. shift, AB, is given by 

AB = -P(%z+flyu+ (11)flzs), 


1 a2 C (Yi12''IY',)exp (-E,/kT) 
i


where ,C eXP ( -E,IkTi 
i B=O 

where !Piare the eigenfunctions (7) and Eithe corresponding eigenvalues. A?' is the 
hamiltonian operator (2). 

We shall examine three cases; namely, when the d-electron is in a strong crystal 
field of (i) octahedral symmetry, (ii) with a tetragonal crystal field component along 
the x axis and (iii) with a trigonal crystal field component along the [1 1 11 axis. 

(i) Octahedral case 

I n  this case the n.m.r. shift is given by 

d(R)+ (1- ~ X P  (3412kT)) kTISs(R) 
B 4n kT 1 $2 exp (3</2kT) (12) 

where 

where 



Hyperfine interaction tensor components 

For the case of the free atom we may take R -t 0 to find 

I +2 exp (3</2kT) 

When R is large, that is when we have long range coupling 

1 4800 1 4and s(R)= -
R7[-P4 J(;) ( q y G 4 ( @ 7  @) --242yGO(@7 @) +T'G-4(@, @))I. ( I 3  b, 

(ii) Tetragonul case 

With a tetragonal distortion along the x axis the n.m.r, shift is given by 
3 

(Ai+BikT)exp ( -si/kT)
AB -- 2~2BPOi=l 

B 3kT 4n: 3 
2 

X exp ( -ei/kT)
i = l  

where 

where 6is the distortion parameter. Ai and Bi may be expressed in terms of spherical 
harmonics, 

A, = (YGP4(@, 0))+uZ(i)J(n/13) @)@'2/(2~/91) @) +YG4(@, YGO(@, 

+ap)J(2n:/35)(Y4-4(@, @)) +aki).Jn @)@) +Y44(@, Y4,(@, 

+ap)J(n/5)Y2,(@,@) +af)Jn:Yo,(@,@), 

Bi = bp'4(2n/91) (YG-,(@, @)) +bP)J(n/13) @)@) +YG4(@, YGo(@, 

+bf)4(2n/35)(Y4-,(@,0)+Y4,(@,0))+b2)Jn Y4,(@, @) 

+b p ) 4 ( 7 ~ / 5 )  @) +b(6i)Jn 0)YZ0(@, YOO(@, 
for i = I ,  2 ,3 .  

The coefficients ali)and bli)for I = 1-6 are functions of the internuclear separation 
R, the spin-orbit coupling constant C and the dist'ortion parameter 6. 

We shall express the coefficients using matrix notation. If we define 
= g-1z(Cl-2-36) A-l, 

b2 = $ +9(C/2-36) A-l, 

ab = ((142) A-l, 

we may then define matrices g g )  and 7tg)as shown in tables 2 and 3 respectively. 

.2 
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The coefficients afi) and bii) may be expressed in terms of these matrices 9:) and 
hji) and two matrices c,,(t) and dl,(t) of radial dependence. That is, 

where t = 2PR. 

The matrix elements cl,(t) and d,,(t), together with their asymptotic expansions 
for R .+co,are listed in tables 4 and 5 respectively. They are given in terms of series 
which are linear combinations of the radial integrals of table I .  These series are 
listed in appendix A. 

(iii) Trigor~alcase 

The next case we shall treat is the one where there is a trigonal distortion along 
the [I1I] axis, the distortion being measured by the parameter 6 and the eigenvalues 
are the ei values of the previous section. The n.m.r. shift is given by 

C (A;+B; kT) exp ( -ei/LT)
AB 2 / ~ 5p0 i = 1  

A 

7B 3kT4n 3 
C exp ( -ei/JGT)
i= 1 
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TABLE4. THEMATRIX ELEMENTS cE,(t) 

(The asymptotic expansion for R +-co for each c,,(t) is given in parentheses.) 

c,, = - 3 1 5  ---8-T 2 -at. (-$I, 
c52 = , f ~ ~ l - , k ~ 3(O), 

c~~= 5+5T1+ S 6 T 3+ &-tl 

c5*= x+FT1+ &t1 

c,, = - 167 5 -&-nl- - 8 - - ~ ~  ( O h  

c 6 ~= ::zNl (O)  9 

c6, = s F N l-&n1 (0), 
c6, = - --8--N1-&-n1

1 5  7 5 ( O ) .  
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TABLE5 .  THEMATRIX ELEMENTS dbrr(t) 

(The asymptotic expansion for R + co for each d,,(t) is given in parentheses). 

1 1026d - - (-rn)>1 3 g S 1  


dl,= 0, 

d1 5 1 6 5- -'-S 1 (%)7 

dl. = - (-$1, 

d2 3 3 8 5-&S 1- (%I7 

d24 -- 1 1 5 5-32-S1 
 (%I9 

d2 5 --"&-s1- 1 1 5 5  (-%I3 

d - --8--S 
26 - 1 1 5 5  1 

(131 = i%F*- :JI 9(g2) 

d3,= -T$xF1+&P4 +$fl 
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d,, = --&:XI +285-n1 (01, 
d -25-N 
s z - 1 5 7 5  1+i%-nl (0). 

d,, = &-nli$kiVL+ (O), 

,j - ---s---y
64 - 1 5 7 5 L  1 (O)'  

d , ,  - ---8--v 
bd - 15 7 5 L 1- i%-)~1 (0)' 

d,, = &Nl + (0). 

where 

R; = - 2, b,,,hk',
3,=1 

1 !? 

where and are listed in tables 2 and 3,  and the a,,,and b,,, are given in table 6 

in terms of the combirlatiorls of the hyperfine interuction integrals defined as follo\vs : 

= C A a ~ ?  
a,B 

Bo = 2 B3,5', 
a,B 

c, = '2= C$', 
a,P 

Do = C D(;",)3.' D(Y) (S'implies a # P: P # y ,  Y # a),-+-
a a,!.Y 

a/ 


Eo = i 2; ((51 lN,/r& iC) +(r 1 1 ~ a / r %10+ ({I lsa/rt-Iv))~ 

ii 
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TABLE6. THEAPPROPRIATE a,, AND b,  VALUES O F  EQUATION (15) 

To illustrate the results froin these calculatioils we shall examine the electron- 
nuclear interaction as represented by the Ilamiltonian (2) when the nucleus with 
a magnetic moment is in the xy plane 0.2 nm from the d-electron bearing nucleus. 

First, we shall consider the case when tllc d-electron bearing atom is in a strong 
crystal field of octahedral syininetry and examine the hyperfine interaction tensor 
components Aap in the 2T,E" level. ( In  this case in equation (7) A ,  = 2'2/, /3,  
B, = 1/,13 and C, = 0.) I n  this example A,, = A,, = A,, = A,, = 0. The remaining 
hyperfine interactioii tensor components are evaluated from equation (10) and are 
marliedly angular dependent as sllown in figure 2. As a specific example, when 
R = 0.211m, @ = 90" and @ = 30" the A tensor, in units of 2g,,u,,u,,uo/47t x 
joules, is 18.7881 13.9944 0 

25.1413 -7.1676 0 

0 - 3.4486 



The principal values of the symrrletric tensor, S,  (S = A7'A)Sl, S, and S, are 
994.2373, 238.0557 and 11.8929 respectively and the corresponding principal axes 
are when O = 90" and 0 = 6.319"; O = 90°and 0 = 96.319" and O = 0" and @ =  0" 
respectively. Hence the principal hyperfine interaction constants are 

The signs of A, and A, were ascertained by considering a range of R values -when 
R - + O A l = A , = A 3 a n d w h e n R - + c o A , + A , + A 3 = 0 .  

The n.m.r. shift arising from the electror-nuclear interaction when the n.m.r. 
nucleus is a t  a position (R, O 0,)from the d-electron bearing atom is given by 
equation (Id) when the d-electron is in a strong crystal field of octahedral symmetry. 
The results for the case when { = 400 em-' and T = 300K when R = 0.2 nm and 
O = in for a range of 0 values are given in figure 3. From the results ABIB is 
markedly angular dependent and can be positive or negative depending on the 
0value. The maximum negative value occurs when the n.m.r. nucleus is along the 
x and y axes and the maximum positive value occurs when the @value for the n.m.r. 
nucleus is an+ i nn  ( n = 0, 1, 2,3, ...). 

If the crystal field has a tetragonal component along the z axis ABIB for a specific 
R is given by equation (14). The results for the case when S = 1000 cm-I, = 400 cm-1 
and 7' = 300K when R = 0.2 nm and 8 = $71 for a range of 0 values are given in 
figure 4. 

If the crystal field has a trigonal component along the [I111 axis ABIB for a 
specific R is given by equation (15). The results for the case when 8= 1000cm-1,
< = 400 cm-I and T = 300K when R = 0.2 nm and O = i n  for a range of 0 values 
are given in figure 5. 

We shall next compare these results with the multipole expansion approach in 
determining ARIB-see, for example, 8IcConnell (1957), McConrlell & Robertson 
(1958) and Stiles (1975). For the case of octahedral symmetry the angular depen- 
dence of the first term in the multjpole expansion, the IlR5 term of equation (13 b) ,  is 

35 cos4 @ -30 cos2 O + 3+ 5sin4 cos 4@. 

I n  the xy plane this reduces to (3 + 5 cos 4 0 )  and the ratio of the values when @ = 0 
and in is -4. The results in figure 3 follow the cos 4 0  dependence but the ratio of 
ABIB when @ = 0 and an is - 1.117. For the tetragonal case the angular dependence 
of the first term in the multipole expansion, the l/R3 term, is (3 cos2 O - I )  and is 
@ independent. The results in figure 4 reflect a @ dependence. 

The inclusion of the higher multipole terms improves the comparison of the 
results but still the results differ significantly. Thus these results confirm our early 
work (Golding, Pascual & Vrbancich 1976; Golding, Pascual & Btubbs 1976) and 
hence in this particular case the multiple expansion method of evaluating the 
electron-nuclear interation should not be used. 

8-2 
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FIGCRE3. The @ dependence of ARIB (ppm) when the n.m.r. nucleus is 0.2 nm In the sy plane 
frorn the d-electron bearing atom in a crystal field of octahedral symmetry when 
5 = 400 cm-I and T = 300K. 

-13.0~ 

FIGURE4. Tho di dependence of AB/B (ppm) when the n.rn.r. nucleus is 0.2nm in the xy plane 
frorn the d-electron bearingatom in a crystal field with a tetragor~al component along the z 
axis when 8 = 1000 ern-', 5 = 400 em-' and T = 300 K. 

FIGURE2. ( a )Tho 6,dependence of A,,for the 2!Z',E"level when t,he 11.m.r. nuclons is 0.211m in 
the zy plane from the d-electron bearing atom in a crystal field of octahedral symmetry. 
A,,(@) = A,,(@ +in).(b) The di dependence of A,, for the ZT,E"level when the n.m.r. 
nucleus is 0.2nm in the z!j plane frorn the d-electron bearing atom in a crystal field of 
octahedral symmet'ry. (c) The @ dependence of A,, for the T8E"level when the n.m.r. 
nucleus is 0.2nm in the zy  plane from the d-electron bearing atorn in a crystal field of 
octahedral symmetry. A,,(@) = -A,,,,(@+ .f;n).All in units of 2g,p,psp,/4n x 1028 
joules. 
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Flur~iir:5. 'l'lie 0 tlepfxrltler~ceof 31'/B (ppm)n l ~ e nt1ltx n.rr1.r. nncleus ir 0.2 llrn 111 the x y  plane 

fiolll the d-cicctron bearrr~g atorn 111 a crystal fieltl w it11 a tngonal eolnpol~erlt along tho 

1 11 11 RYIS \\ E I C I ~  h\ = 1000 ctn-l, 1: = 400 C I I I - ~  anrl T = 300 K.  


&icConrlell, H Jl r957 J .  che7)z. P h y s .  27, 226. 

AicConl~cll,H .  31. <k1liobertr01-1,13 E 19.58 .J, c h e ~ n .P h y s .  29, 1361. 

nlccoi l~~el l ,  J .  2, 129.
H .  nl. ,k Xtrr~t l~(lce,  1959 JIolec. ~ ' h y s .  
Goldnl,o, K.  J i .  1969 i l p p l i e d  lcnve 7nechal~zcs. New York. T'ari Nostrand. 
Coldrrlp, H.  31 , I'drcli,~l, H .  0. & Stltbbs, T,. C. 1976 ,llolec. l 'hys.  31, 1933. 
Goltl~ng,E. 31., P,~,c~lal, R .  0. ik Vrt~arlc~ch,  1976 AIolec. P h y s .  31, 731.J 
l'ltzer, 1Z. 3i., Kerr:, C. 5V. & L~pscornb,52'. N. 1962 J .  chetr~. I'hys. 37, 267. 
Xt~lcs,1'. J .  1975 JIolec.  P h y s .  29, 1271. 

A P P E N D J XA .  R A D I A L  SERIES 

(0) Gencral formulae 

4= 5 ~ ~ , - t ( 2 0 - A ) ~ ~ + ~ 4 ~ , + ( 3 0 - B ) w , + B u ~ , + ( 2 0-C)x,+Cx5+5y,, 

!7: =; 6rr,+(80-d)vl+,1~,+(30-l3-C)~,+Bw2+C~4+(20-d)~l+d~,+61/,, 

where d = / 1 ,  l3 = ( A I )  C =A.  

(1)) Specific formnlae 

AS, = fS712+ 30v3+ 30w4+ Poxj+ 5y6, 

jiBl = A (ul - 21,) + 5(w2-wq)+ +(x3-x5), 

7; = vl-t~,+:,(49w,-d0w,-9w,)+xl-X,, 

,\; = 574 -t142j1 $ 6tS3 + 1Iw,) + Pox1+ 6y0,+ g ( 7 2 ~ ~  
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(c) Parameter values for the and Ij. series 

4 F1 F F3 F4 F5 ' 6  ' 7  

---1 0 7  1 0 8  9 2 0 4  6 9 -24P 20 7 2 3 1 9  4 

4 pa 9 &O Fll ' 1 2  ' 1 3  ' 1 4  

p, - 5 2  12 9 6 5 6 3 8 42 4 9 
7 7 5 3 3 

l? ' 1 5  4 6  El, PIS El, F20 F22 

p, - 2 ?.* 1 6 2  1 2 9  2 9 6 5 .-6 7---- _-
5 7 7 2 6 5 

q Tl T2 T3 T5 T, T7 T,  Tg 
p, 12 18 24 16 14 8 20 5 

.-. _ _ _  6 0  3854. 7_2_ 9 0  6 6 4 1 2  
7 7 7 7 7 7 7 

A P P E N D I XB. THE H Y P E R F I N E  I S T E G R A L S  

Define 

(a) The integrals (!Pi/l,,/r& / Y?) 

(7 I 1 ~ , / 4I 0  = (:) [Ai Qi;'fl+ J (E)Ql; )  t,] , 

(VI  lKu/r;  1 0  = - -:J(&)~itjt,,J(:) ~ i ~ ) f ~  

i[g 
44n

(77 I l x 5 / r k  10= Q40f l  -& J (#;IQdl- Qoonl1, 

(,I l,,,, I V) 
 = 
4 

i[iJ(G)~ i i ) f ~- (;) J 
 + ~ Q ~ J ~ - :J($)~ i : ) f ~  

X Q ~ : ) ~ ~ + ~ J ( ~ ) Q ~ ~ ~ , - ~ Q ~ ~ ~ ~
4Ja 

,I 

2 -:d ( ~ )(<I 1K,,/r5 171) = - 4($1 Q i i ) f 1  +AJ(i)Q i ; ) f 1  Q k i ) t 2 ,  

(,I I,,,: 7 )  = i 6J ( g )&k;' f1 -& J(:) ~ k ~ ' J(;)~ ,] 9+S f ~ i ~ ' 4  
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(61 l , J r3  i{) = 9 ~ i ~ Q ~ T ) ~ ~ - ~ ~ ( ~ )) ~ ~3, Q ; T ) ~ ~ .?J(g) 4 &j(i) 

( I - -

( b )  The integrals (Y,/ T,,] j U/,) 

- Q"" 
8 4.. J ( ; ) Q ~ ~ s ~ - - ~J ( $ ) ~ i ; ) p ~1 6 5 4  ,91 

92 $177 4 J(;)QYTI+Ad(:)Q ~ Z ' L + ~ Q ~ F ~ + ~  

- -  

(61 q,, 5 )  

4 1 6 4 7 ~  
- J(;)G'20yi G'oO~hi, 

8 8 
= -165,J(;) '4+ $J(&) ~ ~ 1 2 ) ~ ' ;+I-384 
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