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The evaluation of the hyperfine interaction tensor
components in molecular systems

By R.M. GoLpixne AND L.C.STUBBS

Department of Physical Chemastry, University of New South Wales,
P.O. Box 1, Kensington, N.S.W. 2033, Australia

(Communicated by D. P. Craig, F.R.S. — Recetved 28 July 1976)

In this paper a general method is developed to evaluate the nine hyperfine
interaction tensor components, 4, arising from the electron orbital
angular momentum and the electron spin dipolar-nuclear spin angular
momentum interactions of an electron associated dominantly with one
nucleus coupling with a nucleus with a non-zero magnetic moment, where
the electronic wavefunction is described by a Slater-type orbital. The
method handles long range and short range coupling including the free
atom case. From the results the degree of non-coincidence of the principal
axes of the g and A tensors and the n.m.r. shifts are evaluated. As an
illustration the molecular system examined is a molecule containing a d!
transition metal ion in a strong crystal field.

1. INTRODUCTION

The interactions of an electron and a nucleus with a magnetic moment with an
applied magnetic field and the interaction between the electron and the nucleus
may be represented by the spin hamiltonian

H =pps g B—puxgxI'B+pxgxIra B+ I A-s, (1)

where the g, 6 and A tensors may not necessarily be coincident nor symmetric. We
shall examine the case when the first term in hamiltonian (1) is the dominant term
and the third term is insignificant. We shall determine the degree of coincidence of
the g and A tensors and the asymmetry of the A tensor for a one electron system.
Hence, we shall develop a method whereby the nine 4,; components may be
calculated for any system where the electron-nuclear interaction is represented by
the hamiltonian

H' = 29 ppind — I 1y x V[r¥ —s-I[r¥ +3(ry - 8) 1 I/} ol 4. (2)

In equation (2) ry, is the radius vector of the electron about the nucleus with nuclear
spin angular momentum, I.

The nine components of the hyperfine tensor will be calculated by equating the
eigenvalues of the spin hamiltonian (1) to the eigenvalues of the appropriate
hamiltonian for the molecular system including hamiltonian (2). Much of the work
involved is in the evaluation of the two centre molecular hyperfine interaction
integrals and the system we shall explore is shown in figure 1.
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224 R. M. Golding and L. C. Stubbs
The electronic wavefunction ¥ (Im;) will be chosen as a Slater-type of the form
Y(lmy) = r'exp (= fr) Yy (0, §). (3)

McConnell & Strathdee (1959) gave a method of evaluating the integrals for the
special case when the two nuclei lie along the z-axis. The operator was expressed as
a function of R and r and the integration performed in the Oxyz system. However,
the singular nature of the operator at the nucleus with the magnetic moment causes
problems, and there is a d-function type contribution (Pitzer, Kern & Lipscomb
1962).

. electron
r
1/
O——-)y
/ electron bearing
| / nucless
m

r. nucleus

Fiaure 1. The coordinate system.

We shall evaluate these hyperfine integrals for the general case, namely when R
can point anywhere in space, not necessarily along the z-axis. The corrections given.
to the results of McConnell & Strathdee (1959) by Pitzer et al. (1962) are automati-
cally incorporated in our answer since the integration is performed in the Oy zy yxn 2y
system and the singularity at Oy is easily handled. The hyperfine interaction
integrals are evaluated by expressing the electron coordinate system Ozyz in the
coordinate system Oy xyyy 2y using the following ideuntities:

A

l l A
’rlYlm(oﬂgﬁ) = E Z Z E (_l)ll 6(l1+l21 l)

L=0lL=0m=—1 my=—1,

an(2l+1)l  \}
((211+ 012l + 1),) {ylymymg|l lylm)

x Rh]’; my (@7 (15) lzmz ON’ ¢N (40')

exp 2/))7’ = 47 2 b (R 7‘,\) 2 Y (@ @ 0N7¢N

n=0 k=-n
where

by(R, ) =\/(7’>/T<)In+_A_(2/)”I’<)Kn+%(2ﬂT>)—-«/7'</7'> n-3(20r2) Ky 4 (267 ), (4b)
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where 7_ is the smaller of R and ry, 7., is the larger of R and ry and I, and K, are the
modified Bessel functions.

To illustrate the results we shall examine the case when the hyperfine interaction
arises from the interaction of a d-electron in a strong crystal field with the nucleus
with spin angular momentum. From a knowledge of the hyperfine interaction com-
ponents we shall determine the degree of non-coincidence of the g and A tensors.
Also, in this paper we shall derive expressions for the n.m.r. shift arising from this
interaction which will lead to generalised results of our previous work on the
pseudocontact contribution to the n.m.r. screening constant in d! transition metal
ion complexes (Golding, Pascual & Vrbancich 1976; Golding, Pascual & Stubbs
1976).

2. THEORY

Since we are examining the interaction of a d-electron centred at O in a strong
crystal field we shall express the required electronic wavefunctions as

|£) = (24"[3n)t yzexp (— fr),
) = (287[3n)k 2w exp (= fr), (5)
1€ = (247[3n)k xy exp (— fr),
where £ = 2.2/a,.
To evaluate the hyperfine interaction integrals, the integrand is expressed as a
function of R and ry using equations (4a) and (4b). For the radial part of the
integrals we introduce, for convenience, the following notation

rB(t) = 4f7(— R)- f * L (R, ry) drg
0

and T

) =), () =), (6)
V(1)

) =

t

( ) Ynlt) = T%))(t),
0,
= 2fR.
From the angular parts of the hyperfine interaction integrals we gain selection rules

on n. The required radial integrals are listed in table 1. The integrals are then readily
evaluated.

wpy(t

where

(@) Hyperfine interaction tensor components

A d! system in a strong crystal field of octahedral symmetry results in a 27,
ground state. The spin—orbit coupling interactions and a crystal field component of
lower symmetry results in a splitting of the 27}, ground state into three doubly spin
degenerate energy levels E,; (k = 1,2, 3) where the eigenfunctions may be written as
(Golding 1969)

[id> = Apl1t) + Byl &) + G| — 1), }

_ ~ " _ (7)
[¥n> = Ap| =17 = By |G )+ G| 1)
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Hence, the g tensor for each energy level E, is diagonalized and the principal g-values

are given as
9% = 2{B}— 24,.C, + 2B (4, — C)},

9% = 2{B} + 24, C + 2B, (4, + Cy)}, (8)
@ = o(243 BY).

TABLE 1. THE REQUIRED RADIAL INTEGRALS

2 AR 2
uz(t)=ﬂ3[§—-(l2+4+2+2) :I
3 2
vs(t)=—ﬂ3[(t§—1t—o)+(:: 7:+9t+10+ 0) ]
3 t 2 ¢ _
wio =[5 (7+3) ]
wz(z)=ﬁ3[(t§—t§)+(t;+5;+6+) ]

t 20 420 2t2 190 420 420
w4(t) = ﬁa [(§_T+ 3 ) (3 8+ 50+ — +—- 2 +— 3 )e_t] ?

[/t 2\ [t 2
w0 == [ (5-7)+(5+2+7) ]

(t 12 180 78 180 180
24(8) = — f° (5—7+ t3) (2t+18+ +— +¢3) -‘:I,

M/t 30 1260 30240

wall) = =F* (5—7 s )
ara 724560 3780 13860 30240 30240\
T M T2 £ # ] ’

t 2 1 2
i =7 (5+7) - (5+7) ]
t 4 36 14 36 36
Yalt) = 3[(‘2‘—;4-1!3) (2+7+t—2+t—3)e_t],

0= p° t_ 18 540 10080\ (.. 168 1140 4500 10080 10080\
Yoty = PR T : P TTa s )% |

2 T T B 4
39 800 10080 80640 433440 1542240 3326400 3326400\ _
t2 + t3 + 1 + 25 + 26 + 7 -

t 40 2520 120960 3326400
Yo(t) = B2 +
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The hyperfine interaction tensor components, 4, are obtained from the solution of
the following six simultaneous equations, namely

S (48)° = 3 (RO,

S (%) - %(1&@)2,

S (AR)2 = X (D)2,
5 4G AL - ézgkwgkn
; AP A® = E DWW R,
5 AR AY) = S ROTY,

a
where

RP = 29NﬂBﬂN[—2«/2Bk(Ck— ) iK€ Inalrii| 1) — 3(Cr+ A1) <E| T, | €D
+ 30— A (9| Tow 1) + BRE| T | O + (CR — ARV E| Ty )
—N2B(Cp+ A1) C| T |ED] 1o 4,
DP: = 2gx pppnl —2(C = A3) i |lxafrX| £) — 2Bi(Cr+ Ai) €| Toc |16
+3/2By(Cr— A1) 0| Toy |8+ 3(Cro + A1) E| T |€)
+3(C— 4> (0| T 1) — BRG] Tz | $D] o/ 4,
IP = 29 pppn[24/2B,(Cp + 4, 1<§|lNa/”N 18>+ (Ck— AR) <E| To |1

+ 3O+ A1) €| Ty 18— 3(Cr— A | Ty [1) + BRKE| Ty 1O
+ /2By (C, — 4y) <n| T, | £)] ol 4,
where Top = (37na"Np— "N Oap) TR

The integrals are given in the appendices.
When R lies along one of the coordinate axes the solution is chosen such that the
A tensor is diagonal. A consistent set of solutions for all directions of the R vector

in space is then
P AR = RBP,
agy) =1, (10)
4B = DB,

Therefore, in general the A tensor is asymmetric. However, it follows that a sym-
metric tensor S can be constructed where

S = A”A.

(b) N.m.r. pseudocontact shift

From a knowledge of the hyperfine interaction tensor components we may deter-
mine the n.m.r. shifts arising from the electron-nuclear interaction represented by
equation (2) when the n.m.r. results of the paramagnetic system are determined in
liquid solution. The principal values o, 0, and o, of the n.m.r. screening tensor,
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o, are determined by considering the magnetic field, B, interaction as parallel to the
x, y and z axes and averaged assuming a Boltzmann distribution. It follows that the
contribution to the n.m.r. shift, AB, is given by

AB = %B(Jxac'l'a-yy"'o'zz)’ (11)
1 02 Z <¥j1, ,%, , Tz> €xp ( - Ez/kT)
where o, = . ,
¥ gnpn\0L,0B, Zexp(—E,[kT) Beo
B -

where ¥, are the eigenfunctions (7) and Z, the corresponding eigenvalues. 7#” is the

hamiltonian operator (2).

We shall examine three cases; namely, when the d-electron is in a strong crystal
field of (i) octahedral symmetry, (i) with a tetragonal crystal field component along
the z axis and (iii) with a trigonal crystal field component along the [111] axis.

(i) Octahedral case
In this case the n.m.r. shift is given by

AB ,u_zB[d(R)+(l —exp (3¢/2kT)) kT/gs(R)] 19
B~ dn kT 1+ Zoxp (3C/20T) ’ (12)
where
d(R) = 921:500/(26) [J7 Yes(O, D) - 242 Yeo(O, ¢)+~/7 Y5 (0, ¢)] M (¢)

1  (55) VT, 0) + 1/HTl0, 2) + 1/ @)Y:0, 21 B

+ o5y Yoo(0, D)]J(2),

o(R) = 252 [ (50) [0, 0)~ 55 Tut0. 0+ 47, 0,9 )

_ 7168 A/( ) [BV(3) Yaa(0, D) + 3 (3) Yio(O, D)+ 3(3) ¥,_4(O, B)] G(t)

t5
~-%‘g—\/ﬂ:[lfoo(@’ (15)] P(t):
11 4n
where M) = p® [ — et Z }
8 1° 8 n
K@) = p? [l—e—f<-1—@+n§m)],

J(t) = pPet ——+ By t2+t+1
94! " 3!

00 = e (g55):

Py =pret( -2, 3+t +t+1).
T 454! 2!
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For the case of the free atom we may take B — 0 to find

AB 803 u%[3—5[1 —exp (38/2kT)1 kT[] po
B ___[ 1+ 2exp (3¢/2kT) ]477'

B T35 kT (13a)

When R is large, that is when we have long range coupling

iR =7 22 () (Sre.0)- 55 Y6, 0+ 55,46, 9))|

o () BUOIT6, )+ () Y0, )+ 1D Vo0, D)

and  s(R) = — {4220 A/( )(*/7 Y;u(0, B) \/2 60(@,¢)+‘/T7I;_4(@,<p))]. (130)

(ii) Tetragonal case

With a tetragonal distortion along the z axis the n.m.r. shift is given by

% (A;+ B, kT) exp (— €;/kT)
1=1

AB _ 24% po
o =ZEB [ - , (14)
B 3kT 4rn ,;1 exp (= e,/*T)
where € =36+30-34,
6= H+10+14,
_%g_ax

A? = 982/4 — 36¢ + 962,

where 8 is the distortion parameter. 4, and B, may be expressed in terms of spherical
harmonics,

A; = a®(2n[91) (Y5_y(O, D) + Y54 O, D)) + agd |/ (n[13) Y50(O, D)
+af0./(2n[35) (Y;_s(0, D) +Y34(0, D)) + & Jr Y3o(O, P)
+a{(n[5) Vo0, D) + 6 {m Yoo O, P),
B, = b".J(21/91) (Y;_4(0, D) + Y5, (O, D)) + 1§/ (n[13) Y(O, D)
+5§7/(21[35) (Y, _y(0, P) +Y34(0, P)) + b7 n Y (6, D)
+b0./(/5) Yo0(O, P) + b {1 Yoo(O, P)
fori=1,2,3.
The coefficients a{®) and b{®) for! = 1-6 are functions of the internuclear separation
R, the spin-orbit coupling constant { and the distortion parameter d.
We shall express the coefficients using matrix notation. If we define
@ = }— (2 —30) A~
b* =} +3(f2—38) 4,
ab = (§[y2) A

we may then define matrices g and k) as shown in tables 2 and 3 respectively.
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The coefficients a{") and b{") may be expressed in terms of these matrices g{? and
kY and two matrices ¢,,(t) and d,,(¢) of radial dependence. That is,

4 .
a’;” = 2 clm(t)g%),

m=1

6 .
b;i) = 2 dlm(t) k%),
m=1

where t = 28R.
TABLE 2. THE MATRIX ELEMENTS ¢\
m t=1 =2 1=3
1 at bt 0
2 J2a%b —/2ab® 0
3 a?b? a?b? 0
4 —J2ab® J2ash 0
TABLE 3. THE MATRIX ELEMENTS h{Y
m t=1 =2 t=3
1 qcl + b4 b4 + a4 0
€,—€ €2—€;
0 a?b? b2a2 o
€ — €, €y — €L
3 (v/2 ab® — /2 a®b) (v/2 ab® — /2 a3b) 0
€1—€ €2—€;
a? b2 a? b2
4
€, — €3 €y— €5 €3—€, €3—€y
5 AJ2ab J2ab J2ab  J2ab
€,— € €5— €y €3—€ €E3—6€
b2 a? a? b2
6
€ —€3 €;— €3 €3—€; €3—€;

The matrix elements c,,(¢) and d,,,(t), together with their asymptotic expansions
for B — oo, are listed in tables 4 and 5 respectively. They are given in terms of series
which are linear combinations of the radial integrals of table 1. These series are
listed in appendix A..

(iii) 7'regonal case

The next case we shall treat is the one where there is a trigonal distortion along
the [111] axis, the distortion being measured by the parameter ¢ and the eigenvalues
are the ¢; values of the previous section. The n.m.r. shift is given by

3
AB §1 (A;+ BjkT)exp (—e,[kT)
‘B

=

07

’

wl\gs
=
Sl
&l

3

3, exp (~6,/KT)
i=1
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TABLE 4. THE MATRIX ELEMENTS ¢, (t)

(The asymptotic expansion for B — oo for each ¢;,,(¢) is given in parentheses.)

¢ =0,
12600
C12 = 15551 (W) ’

15750
013 — _?)%-Sl (__.7’7)’
1575
165 ( - RT—ﬁ“) ’

Cig =

R? ﬁ“ 4
450
Co1 = 115551 (W) )
¢y =0, .
140
Ccsa = 16571+ 1658 (53/72) )

280
ey = — 1551+ 755+ 5N ("E;ﬂ—z) )

70
s = w05l at Nt (_.RTﬁg)’

48
cu =P+ W5 ()

32
- —8_ —-46__ —-38__ i -
642_825F2_17325F3—17325F5+825Fs (Rﬁﬂz ’
_ __8_ _.78__ 1 128 J1 __ _4&_ _8_ _
iy = — w25+ 17555 s — 17525 s — 525 s +315 /1 ( Rsﬂz)’

28
¢ = — 17355 st 1ow/1 (— I3 ﬂg) ’
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TABLE 5. THE MATRIX ELEMENTS d,(t)

(The asymptotic expansion for R -> oo for each (1) is given in parentheses).

3150
du=115 (Fg)-

25200
dyp = "'%’Sx (—W) ’

11025

dis = ~ 1651 (""RTﬂr) ,
3150

dis = 76551 (W) s

3150
dis = ~ 70551 (_R’—/ﬂ) ,

3600
dyy = 11555 (W) ’

Ay = — 7355, (—%‘;—‘ﬁ) ,

dzs = 3155“5'31 (%);) s

dy = T%EF4—%f1 (1';:5%5) »

dw= T4 3T ()

70
daa-— 165F1 F4“'%f1 (_RTﬂz)’
dyy =0,

dys = sl + i ( R5ﬂ2)
dgs = —155ts —5h (R5ﬂ2)

d41-" 825 105f1 (Ef'_w)’
F ~152 25686 63 _F 24
dyy = —5isFa+ 13555 Fs — 13585 s —175ssl — w5l s — 351 R

4
d4a = —382 5F 2+ "'is_'"F 3+ T'ia%' EF 5+ T?’f’?F 6 “T;EF 8 T%Ef 1 ( - RS ﬂ2) ’
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TABLE 5. (cont.)

16
d44 = T‘%&%‘;F7 (—R5ﬁ2) ?

12
dis = 5558y —1ransla t105h1 (W) ,

4
dyg = _E%EFz"I%Efx ( )9

RS VE
2
ty =5l (- )-
36

dsy = 35571+ 355 TatsisTs+ TosTat o5t (ﬁ) »

4
dss = —7osT1+ 51505 —s5h (" 1_25) ’

4
dsy = — E%Tz - "RTa) s
4
dss = 315 Ta+ 75370 + 5%t (ﬁ) ’
2
dsc = ‘T%§T4 - 'e%t1 (—R?:,) ’
dgy = — s+ (0),
dgy = 575N+ s (0).
dgy = TN+ (0),
dgg = —1375N1 (0),
des = —1575N1—15m (0),
des = 'ﬁiNl +3%n, (0).
P R
where A; = 3 Zlamgm )
m=
,_ 13 (0)
Bi=3 3 buhiY,
m=

where ¢{®) and A(®) are listed in tables 2 and 3, and the a,, and b,, are given in table 6
in terms of the combinations of the hyperfine interaction integrals defined as follows:

Ay= 3 A4,
0 ) 7

BO = ZﬂBaﬂ’
00 = azﬁoyz)’

D, = D@+ 3 Dy;s) (2" impliesa # B, B # v,y # a),

a o, B,y

By = 12 {CE] bl 1+ 1| Ugalr )+l Dxal T [0
Fy = 3i{(8] Iyalrk | 1> + CEl Iy |8+ Cnl el |£0} = B,

8 Vol. 354. A.
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Agp = HE| T |E)+ | Tp |1 +<E| Top |8+ 2 CE| Top m) + 20| Top | £
+2{| T4 6}

Bop = $CE Top 18) + <0l Toplm) +<8| Tap 18) — <€l Top 1) — <0 Top |8 = <E| T 6D},

) = H2 | Top |8 =< Top [1) —<E| T |18 — 20l Top |6 + <L Top [€)

+<E| g I}
O = §2<n| Top |1> = <E| T | ) — <E Top | €D — 2<E| Top €D +<El T I
+| Tos |},
%) = 42 Top 1O — & Tup 1€) — (0| Top |1 — 2 <E| Top I> + <0 Loy |E)
+<E T |£D),
D3 = H{2E| Ty |8 =l T [ = | Top |+ 4 | T £ = 2 T 1)
=248 Top I},
DR = §2 ) Loy 1) — <E Top | — €| Top |E) + 4 <E| Top |E) — 2 CE| Top 1>
=2 T4 |5}
DG} = {28 Tp |1 O = E| Tup 1) = Lop 1) + 4 E T 1) =201 T [ £
=2 Ty 16}
TABLE 6. THE APPROPRIATE @, AND b, VALUES OF EQUATION (15)
m Uy by
2 son, 3B 2004 3D, 6y 2,
3 24, + By+ 20, + Do+ B, — 2F, Ayg—Dy—F,
4 —Ay+F, —2B,
5 —_ Co—By+7F,
6 — Cy+F,

3. DIscUusSsION

To illustrate the results from these calculations we shall examine the electron—
nuclear interaction as represented by the hamiltonian (2) when the nucleus with
a magnetic moment is in the zy plane 0.2nm from the d-electron bearing nucleus.

First, we shall consider the case when the d-electron bearing atom is in a strong
crystal field of octahedral symmetry and examine the hyperfine interaction tensor
components A4,, in the 2T, E” level. (In this case in equation (7) 4, = ,/2/,/3,

= 1/y/3and C, = 0.) In thisexample 4,, = 4,, = 4, = 4,, = 0. The remaining
hyperfine interaction tensor components are evaluated from equation (10) and are
markedly angular dependent as shown in figure 2. As a specific example, when
R =02nm, ® = 90° and @ = 30° the A tensor, in units of 2gy uy pzu,/4n x 1028

joules, is 18.7881  13.9944 0

25.1413 —17.1676 0
0 0 — 3.4486
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The principal values of the symmetric tensor, S, (S = ATA) §;, S, and S; are
994.2373, 238.0557 and 11.8929 respectively and the corresponding principal axes
are when @ = 90°and @ = 6.319°; & = 90° and @ = 96.319° and @ = 0° and @ = 0°
respectively. Hence the principal hyperfine interaction constants are

A, = St = 31.5316,
Ay = — 8} = —15.4291,
Ay = A, = —S5 = —3.4486.

The signs of 4, and 4, were ascertained by considering a range of R values—when
R—>04,=4,=A;and when R >o0d4d,+4,+A4;=0.

The n.m.r. shift arising from the electron-nuclear interaction when the n.m.r.
nucleus is at a position (B, & @,) from the d-electron bearing atom is given by
equation (12) when the d-electron is in a strong crystal field of octahedral symmetry.
The results for the case when { = 400cm~1 and 7' = 300K when R = 0.2nm and
O = In for a range of @ values are given in figure 3. From the results AB/B is
markedly angular dependent and can be positive or negative depending on the
@ value. The maximum negative value occurs when the n.m.r. nucleus is along the
x and y axes and the maximum positive value occurs when the @ value for the n.m.r.
nucleus is in+inrw (n = 0,1, 2,3, ...).

If the crystal field has a tetragonal component along the z axis AB/B for a specific
Risgiven by equation (14). The results for the case when § = 1000 cm~1,{ = 400 cm~?!
and 7' = 300K when R = 0.2nm and 0 = }r for a range of @ values are given in
figure 4.

If the crystal field has a trigonal component along the [111] axis AB/B for a
specific R is given by equation (15). The results for the case when ¢ = 1000 cm—1,
{=400cm~tand 7' = 300K when R = 0.2nm and @ = }n for a range of @ values
are given in figure 5.

We shall next compare these results with the multipole expansion approach in
determining AB/B-see, for example, McConnell (1957), McConnell & Robertson
(1958) and Stiles (1975). For the case of octahedral symmetry the angular depen-
dence of the first term in the multipole expansion, the 1/R® term of equation (135), is

35¢c08%@ —30c0s20 + 3+ 5sin? @ cos 4P.

In the zy plane this reduces to (3 + 5 cos 4®) and the ratio of the values when @ = 0
and 1n is —4. The results in figure 3 follow the cos 4@ dependence but the ratio of
AB[Bwhen @ = 0and }nis —1.117. For the tetragonal case the angular dependence
of the first term in the multipole expansion, the 1/R3 term, is (3 cos* @ —1) and is
@ independent. The results in figure 4 reflect a @ dependence.

The inclusion of the higher multipole terms improves the comparison of the
results but still the results differ significantly. Thus these results confirm our early
work (Golding, Pascual & Vrbancich 1976; Golding, Pascual & Stubbs 1976) and
hence in this particular case the multiple expansion method of evaluating the
electron—nuclear interation should not be used.

8-2
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FIGURE 2. (a) The @ dependence of 4, for the 2T, E” level when the n.m.r. nucleus is 0.2 nm in
the zy plane from the d-electron bearing atom in a crystal field of octahedral symmetry.
Ayy(P) = AP+ 4m). (b) The @ dependence of A,, for the 2T, E” level when the n.m.r.
nucleus is 0.2nm in the ay plane from the d-electron bearing atom in a erystal field of
octahedral symmetry. (¢) The @ dependence of 4,, for the T, E” level when the n.m.r.
nucleus is 0.2nm in the zy plane from the d-electron bearing atom in a crystal field of
octahedral symmetry. A4,,(®) = —A4,,(P+4n). All in units of 2gyuymppe/dn x 1028
joules,
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APPENDIX A. RADIAL SERIES
(@) General formulae
F; = bug+ (20— A) v, + Avg 4 (30 — B) wy + Bwy + (20 — C) a3 + Cy + 5y,

— 10 45
B =% n-%,

where A =p,
T; = Bug+ (20— A) v, + Avy+ (30 — B — O) wy+ Bw, + Cwy 4 (20 — A) 2y + Ay + 5y,
where A=p, B=2Lu-X1+1), C=2X
(b) Specific formulae

Sy = bugy + 2005 + 30w, + 2025 + 5y,
Fyy = 3 (vy —v3) + F(wy —wy) + 525 —5),

vy — Vg + 55 (49wy — 40w, — Yw,) + 2, — 25,

Suy + 140, + 605+ 5(Tw, + 11w,) + 202, + 5y,

mno_
T, =

N, =
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Ji = v+ 3wy + 33+ yy,
ty = vy + §(14wy — 5wy) + §(Twy — 25) + s,
ty = vy +5(14wo + 13wy) + §(T2y + 223) + s,
ny = vy + §(5w + 4ws) + 3%, +yp.

(¢) Parameter values for the F; and 7} series

poo200 T 9 E s o
ﬁ; E18 ﬁ;) F 10 F111 F 12 F, 1?14
g1z 3 a2 g
ﬁ; 1?15 17'16 17'17 F118 17'19 F 20 F, 22
po-2o o o on oa g

LonoT, T, T h, h %

)/ 12 18 24 16 14 8 20 5

A 54 72 90 66 60 4 78 12

7 7 7 7 7 ki 7

APPENDIX B. THE HYPERFINE INTEGRALS
Define

Qi ﬁ (¥ 2,(O, @) £ Yy, (0, P)], My, # 0,
QLo = YLO(@a ¢)~

(a) The integrals (¥;| Ix,[r |¥;>

Ol 18 =i [ (F) e+ [ (F5) o).
Ol 19 = [(Z) ein-3 /(55 en

il 19 = 1[5 0wt~ | (5) Qo= 55 Qo]

Wit ny =15/ (35) @55 (5) 420 Qi / (%)
i o]

Wbl ny = =3 [ () g5,/ 5 )042 = (15)Q ',

Wit n =i[5./ (2) e -5 f (F) oot 3 () @0t |
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Etal1® = () g /() w3 [ (F5) ot
@t fo =1 [ () 0s+ 5, () o+ THE Quf
(e (e tfrn]
el [0 =5,/ (55) s 57, (5) o0 si-3,/ (T5) @i
(b) The integrals (%] T2, | %)
@l =1 J(E) @S+ (5 Qi 15, (35) @4 R,

*a1s. (5) @7 F+ g5 Qw105 (75) 067
55 (5) a7 T35 %0
W18 =155, () 808+ 15, (T3a5) @95+ 355,/ (F5) 2
iy (55) 5 () T
o (B -5t [(3) @+ T
@ Tel8> =~ 3 [(1555) 98~ 155, (F5) Qo 355,/ (5) @R
s (aime s (e o
@18 =1 155 /(&) 68~ 15 (ms) 08— 15 (&) 'R
vamr (5 kg J(E) esom].
@10 =] -5 [ (7355) 60— 55, (555) 008~ 5.  (52) @ P
et )]
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Ele =5 [ (o) 8- 155, (555) @05 55, (35) 2P
2

el —
Tty = 155 () 0625~ s/ (50 94875+ 355,/ (45 s

4 T 32 76 /1
. (+) — +)
+165 ( )Q F+3465 ()Q A= 17325Q4° 5

4

Tty =~ 105 (o) 08025+ 5. (75) Qo= 755, (55 @i 7

8 T 92,/n 4
_— (+) (+)
315 (5) Qs fiy + 17325Q4° 3 105J\ )Q22 g

241

6

105A/( )Qg 5= 315 ()Q2° 3+1§/75Q°° L

4 164/n
315J( )Qz" 171575 Qoo s,

32 21 32 8 T
| T, ) = 1_65A/(i§6_5) Qg)&—'ﬁ‘ggA/( )Qso 1+495A/(’5) QFy,

164/n 16 o 8 n 8\n
17325(240 7+ J( )Q 315 = Qo T+ 1575Qoo 1

Tl =] 155,/ (5 )Q S (o) s+ 155, (35) 950
Pt 135 A/ (1%) Q(ZE)TG] ’
) F,

+§i;—1 ()Q&a
e =[5 (o) 678~ 755, 575 @0+
iy (5)

ey =25 (o) s (55) 008+ 55 (35) @
i i )
ATal0 =2 [ (soms) 054 155, (75) @8 755, (5es)
i (1) 2. (55) @i 11855J(E)Q‘4'2”F1

2 2n
= J(Ge) s

13+105A/( )Q ]

7

64\/“ 4 () 4 \/
+17325Q4o st 105 A/( )Q2z7 315 Q20T+1575Q00 1
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@110 =2 [ (gon) @5+ 155, ) 8578 - 155, (755) 94781
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@l =55 [ (s) 0628~ 155, (575) %755, (55) 9 e
B (e

@ty =[5 [ (55) 96628~ 165, (55) @8+ 55, (35) @44 B
il (5) @05, () @)

Tl =12 [( o) 088~ (o) 06281+ 15, (555 08
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210 =155 7555) %% 15 o5/ (oms) @08~ 155, (35) @
v ot )]

16 =5 (o) s 3 (305) 9608+ 155, (53) @0
'1i65m/(35)Q43 0~ 335 (%)Q&f)F2°+1i(>5A/( )Q .

710 = 555, 51) 05 5. (75) Qw135 (55 7

23“/()@(“ S 2+35A/( )ng 105/(2)

553 Qo

1l T |6 = [165/(%) Q%Z)SI_I%%A/(B%) Q%e’S 12&/(315) Uk
o (5) 'R 1 (35) 0]

X Qoo Ty +



244 R. M. Golding and L. C. Stubbs

ATl =~ () 008+ 5 (5ms) @5 155, (353) @05
o J (o) @R | () - 155, (F5) @6

ATl =5 (o) 0628+ 55, (1) 967+ 155, (53) @4
o () 06 o o (%) @ Pt 15 () 2

A1 =55 [ (e 06528~ 155, (53) @68+ 5. (35) @'
“any (5) 4 1.
W10 =1[ -5 () 05— (oms) 0628+ 65, (573) @0,
i J(5m) 4R35,/ (3 )Q&t)ﬁ;0+1§5 J(E)esm).
W10 =1 105 [ (3) @05~ 155, (3e) 75— 75, (35) @
raary (5) 0r 1. (1) 45

T8> = 165A/( )Q e (113)@6081 165A/( )

_-‘Z_iglA/(g)Qf‘;)le :‘2/;@40 B 345A/< )Qm“ 135 (g)

LI

X Q20T Ralrvy 525



