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Absolute entropies from molecular dynamics simulation trajectories
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A heuristic formula for calculating absolute entropies from the covariance matrix of atom-positional
fluctuations was extensively tested. Because of its heuristic nature, the results obtained are
compared to analytical expressions for an ensemble of harmonic oscillators, for the ideal gas, and
to numerical results obtained from the equation of state for the Lennard-Jones fluid as a means of
validation of the approximate formula for the entropy. The formula yields rather accurate results.
The removal of translational and rotational rigid body motion and the effect of the various fitting
procedures involved are discussed for the more realistic system of ab-heptapeptide in solution.
© 2000 American Institute of Physics.@S0021-9606~00!51539-6#
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I. INTRODUCTION

Molecular dynamics ~MD! simulations are a well-
established tool to investigate the stability and behavior
systems ranging from abstract models to complex molec
assemblies of biological interest.1–5 The energetics of thes
systems is easily accessible using MD and even relative
energies are now routinely calculated, albeit at a high co
putational cost. However, the calculation of entropies
mains complicated because the entropy depends on
whole phase space of the system of interest.6 This is true
even for entropy differences.

Most methods7,8 for entropy calculations based on M
simulations have been restricted to the configurational
tropy of a molecule as the sampling of the translation a
rotation of the molecule was not complete. These meth
used a transformation to internal coordinates to separate
slow overall motions from the comparably fast internal m
tions. Complications due to the handling of constraints w
usually neglected. To calculate entropies the probability d
tribution of each degree of freedom~DOF! must in principle
be known. However, it is notoriously difficult to samp
probability distributions, especially their tails. A typical a
proximate solution to this problem is the assumption o
particular functional form for the probability distribution
Karplus and Kushick7 used a Gaussian form for each intern
degree of freedom~bonds, bond angles, dihedrals! and the
correlation between them. Di Nolaet al.8 tried a combination
of direct sampling for each degree of freedom and a Ga
ian approximation for the correlation. They found that t
inclusion of correlations was important. The Gaussian
proximation to the probability distribution of each degree
freedom seemed to be appropriate.

In 1993, Schlitter9 proposed yet another approxima
method that is rationalized using the Gaussian approxima
to the probability distribution but elegantly circumvents t
need to express the entropy in internal coordinates. Sc
ter’s formula is of heuristic nature and constitutes an up
bound to the entropy. The approximate formula was ration
ized by showing that the correct quantum and classical lim
7800021-9606/2000/113(18)/7809/9/$17.00
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are obtained for the temperature approaching zero
infinity.9 The numerical tests presented in Ref. 9 were,
fortunately, of limited value. Here, Schlitter’s heuristic fo
mula is extensively tested with the aim of its validation. Se
ond, as the method allows us to use Cartesian coordin
and does not restrict us to the configurational entropy, i
used to investigate entropic effects in the reversible fold
of a small peptide.5 We have implemented Schlitter’s for
mula to work with theGROMOS96simulation package.10,11

II. METHOD

Schlitter9 introduced a very elegant formula to calcula
absolute entropies from MD trajectories using the covaria
matrix of atom-positional fluctuations. In this section w
summarize the heuristic derivation of Schlitter’s formula
order to clarify the approximations on which it is based.

The formula is based on a quantum-mechanical tre
ment of a one-dimensional degree of freedomx with states
un&,n50,1,2,... . The energy of each state isen , the mass of
x is m, and its mean̂x& is assumed to be zero. The canonic
partition function at temperatureT is

Z5(
n

exp~2ben!, ~1!

with b51/kBT, the Boltzmann constantkB and temperature
T. The complete entropyS of the system can be expresse
using the probabilitypn5exp(2ben)/Z of finding the system
in staten as

S52kB(
n

pn ln pn . ~2!

For a given expectation value~ensemble average! of the vari-
ance ^x2&5(npn^nux2un&, the entropy is maximized by
varying the probabilitiespn . The variancêx2& and the nor-
malization of the probabilities(npn51 are taken into ac-
count as constraints using Lagrange multipliers.

This results in the demand that the energy of each s
must be proportional to the state’s variance:en}^nux2un&. A
system for which this condition is fulfilled is the simple ha
9 © 2000 American Institute of Physics
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monic oscillator ~SHO!. The entropy Ssho of a one-
dimensional simple harmonic oscillator can be expres
analytically as

S<Ssho5
kBa

ea21
2kB ln@12e2a#, ~3!

wherea5\v/kBT, \5h/2p, v is the frequency of the os
cillator, and h is Planck’s constant. It was shown b
Schlitter9 that the entropy of the harmonic oscillatorSsho is
an upper bound for thetrue entropyS of the system.

The frequencyv of the oscillator depends on th
quantum-mechanically defined variance^x2& and must be
connected to the classical variance^x2&c that can be mea
sured in classical simulations. As a connection, the equi
tition theorem

mv2^x2&c5kBT ~4!

is used. The equipartition theorem holds only in the lim
\v!kBT. This approximation is likely to be good becau
in a molecule the high-frequency motions for which it fa
will contribute very little to the entropy.

In the generalization of the formula to many degrees
freedom it is simpler to use an approximation to Eq.~3!
which was introduced and rationalized by Schlitter,9

S<Ssho,S85
1

2
kB lnS 11

e2

a2D ~5!

5
1

2
kB lnS 11

kBTe2

\2 m^x2&cD . ~6!

Heree5exp(1) is Euler’s number.

A. Many degrees of freedom

The generalization to many degrees of freedom is ba
on the covariance matrixs of the atom-positional fluctua
tions with the elements

s i j 5^~xi2^xi&!~xj2^xj&!&, ~7!

wherex1 ,...x3N are the Cartesian coordinates of anN par-
ticle system. The covariance matrix can also be expresse
mass-weighted coordinatesxi85xiAmi and becomes

s85M1/2sM1/25Ms, ~8!

whereM5M1/2M1/2 is the mass matrix of rank 3N in which
the diagonal elements hold the masses andmi j 50 for iÞ j .
The last identity holds becauses andM1/2 are both symmet-
ric matrices.

The mass-weighted covariance matrix can be diago
ized, giving a new set ofuncorrelated~the off-diagonal ele-
ments are 0! coordinatesqi . For each of these new degre
of freedom the entropy can be calculated with Eq.~6! and the
varianceŝ qii

2 &c which are the diagonal elements of the m
trix s8 ~expressed in the coordinatesqi),

S,S85
1

2
kB(

i 51

3N

lnF11
kBTe2

\2 ^qii
2 &cG

5
1

2
kB lnS )

i 51

3N F11
kBTe2

\2 ^qii
2 &cG D . ~9!
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Taking the product of the diagonal elements of a diago
matrix as in Eq.~9! is equivalent to calculating the determ
nant of the matrixs8. Because the determinant of a matrix
invariant under any orthogonal transformation Eq.~9! can be
rewritten as9

S85
1

2
kB ln detF11

kBTe2

\2 MsG . ~10!

Therefore, the transformation to an internal, non-Cartes
set of coordinates is not necessary. To calculate the ent
using Eq.~10!, it is only necessary to calculate the cova
ance matrix@Eq. ~7!# from a trajectory. The correct quantum
mechanical limit for high-frequency motion is obtained wi
Eq. ~10!, because a covariance matrix whose elements ar
vanishingly small will give an entropy of zero.

Very slow motions like the center of mass motion of
larger molecule can lead to a constantly increasing varia
and therefore to a convergence problem in the entropy
culations based on Eq.~10!. A simple translational fit on the
centers of mass of the molecules at the various time poi
however, will remove the center of mass motion and lead
more rapidly converging results. The missing entropy con
bution ~the ideal gas contribution! can be calculated analyti
cally, if required.

B. Approximations

Several approximations are used in the derivation of
formula described above:

~1! Every degree of freedom is treated as a quantum h
monic oscillator,

~2! The equipartition theorem is used to connect the cla
cal variance and the frequency of a quantum harmo
oscillator @Eq. ~4!#, and

~3! An approximate expression@Eq. ~5!# for the entropy of a
quantum harmonic oscillator is used.

As stated above, the second approximation is not
pected to give rise to any significant errors, as hig
frequency motions will contribute little to the entropy. Th
third approximation can also be shown to be very good o
the whole range of molecular frequenciesv.9

The first approximation might break down depending
the type of system that is examined. Bond vibrations, ang
bending, and torsional-angle motions in a molecule are pr
ably well described by a harmonic approximation. The m
tion of a molecule inside a solvent, on the other hand
probably a bad case for an harmonic approximation. Sec
IV B examines these effects in detail for the entropy of
Lennard-Jones fluid.

III. STOCHASTIC DYNAMICS OF HARMONIC
OSCILLATORS

The simplest system to test Schlitter’s formula is an e
semble of independent classical harmonic oscillators. T
results can be calculated analytically and checked agains
results from simulations.

One hundred completely independent, noninteract
particles of mass 15.994 amu were harmonically restrai
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



5
g

0
th
o

ne
op

ca

-
e
s

he
lla
ar
r

d

th
u

p
o

of
sin

e
i

he
re

te
ti
u

c

-
ms
ver
ig-

are
al-

les.
uid
to

ne-

n-

ion

py
is
%.

the

rd-
m-
not
of a
in

nd
ed
ible
d
to 1

ns
ere
an-

na
a
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from leaving their initial position with a force constant of 2
kJ mol21 nm22. They were given initial velocities accordin
to a Maxwell–Boltzmann distribution at 300 K. A 1 ns sto-
chastic dynamics simulation with a friction coefficient of 1
ps21 at a temperature of 300 K was performed using
GROMOS simulation package.10,11 The time step was set t
0.01 ps.

This setup yields a system of 300 independent, o
dimensional classical harmonic oscillators whose entr
can be calculated analytically using Eq.~3! ~exact expres-
sion! or Eq. ~5! ~Schlitter’s approximation!.

Taking the generated trajectory the entropy can be
culated using the covariance matrix@Eq. ~10!#. When using
the full covariance matrix the entropy will be slightly low
ered because of spurious correlations that arise from th
nite numerical accuracy and finite simulation length. The
correlations are in this case an artifact and unwelcome w
comparing to analytical results for truly independent osci
tors with zero correlations. The spurious correlations
omitted by using only the diagonal elements of the cova
ance matrix in the calculation. The results are summarize
Table I.

The exact result@Eq. ~3!# is slightly smaller than the
result from Schlitter’s approximation@Eq. ~5!#, showing that
the latter approximation is always an upper bound to
exact value. The results of the simulation ignoring spurio
correlations agree well with the analytical results.

IV. SIMPLE MANY-PARTICLE SYSTEMS

A. The ideal gas

For the ideal gas it is possible to calculate the entro
analytically, either through classical statistical mechanics
using Schlitter’s approximation~see Appendix A!.

The molar entropy of an ideal gas with a volume
22.41/mol was calculated for a range of temperatures u
both methods~see Table II!. Clearly Schlitter’s method gives
an upper bound to the exact value. The ideal gas repres
the worst case for the harmonic approximation used
Schlitter’s formula explaining the relatively large errors. T
error is only slightly decreasing with increasing temperatu

B. The Lennard-Jones fluid

The Lennard-Jones fluid is used as a more realistic
system for which numerical values for the entropy are s
available for comparison. A system of 256 argon atoms

TABLE I. Entropy of an ensemble of 100 independent three-dimensio
harmonic oscillators. Values from the stochastic dynamics simulation
compared to analytical results.~Exact method@Eq. ~3!# and Schlitter’s ap-
proximation@Eq. 5#.!

Method SshoJ K21 mol21

SD simulation:
full covariance matrix 33.449
only diagonal elements 36.897

Analytical calculations:
Exact using Eq.~3! 36.9782
Schlitter using Eq.~5! 36.9784
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ing the parameters of theGROMOS96 force field10 version
43A1 (e/kB5119.8 K,s50.341 nm) was set up in a cubi
box with an edge length of 2.3 nm~reduced densityr*
50.834). The system was simulated~time step52 fs) at
constant volume (volume512.2 nm3) and constant tempera
tures:T5200, 300, 400 K. At each temperature the syste
were simulated for 200 ps and the entropy calculated o
the whole 200 ps trajectory. The entropy was calculated
noring correlations (Slj,nc

sim ) and with all correlations included
(Slj,cr

sim).
The numerical results obtained from the simulations

compared to numerical results which were obtained by c
culating the entropy of an ideal gas (Sid

exact) exactly and af-
terwards correcting for the interaction between the partic
This correction, the residual entropy of a Lennard-Jones fl
(Scorr

eos), was calculated numerically using a polynomial fit
the equation of state of the Lennard-Jones fluid.12

Table III shows the results. In the case of complete
glect of any correlation between the particles (Slj,nc

sim ), the
entropy of the Lennard-Jones fluid is very similar to the e
tropy of an ideal gas (Sid

exact). Taking the correlation into
account, the entropy (Slj,cr

sim) is drastically lowered. This again
illustrates that for the ideal gas the harmonic approximat
is poor.

The difference between the entropySlj,cr
sim from the simu-

lation including all correlations and the corrected entro
Slj

exact calculated numerically from the equation of state
also given in Table III and ranges between 6.9% and 3.7
The difference is significantly smaller than in the case of
ideal gas.

V. ENTROPY CALCULATIONS FOR A
b-HEPTAPEPTIDE IN SOLUTION

The ensemble of harmonic oscillators and the Lenna
Jones fluid are highly idealized test systems in which a nu
ber of important aspects of more realistic systems are
addressed, e.g., presence of internal degrees of freedom
molecule. Therefore, the formula was applied to a peptide
solution which has been extensively studied a
characterized.5 A b-heptapeptide in methanol was simulat
at different temperatures. The peptide undergoes revers
folding in the simulations and the ratio of folded to unfolde
structures decreases with increasing temperature from 49
at 298 K to 1 to 3 at 360 K. For 298 and 340 K, 200
trajectories, and for 350 and 360 K, 50 ns trajectories, w
available. The first three simulations were done in a rect

l
re
TABLE II. Molar entropy of an ideal gas~mass 16 amu! in J K21mol21 at
different temperatures. Exact analytical values obtained using Eq.~A3! are
compared to analytical values using Schlitter’s approximation, Eq.~A4!.

T
K

Sideal

J K21 mol21 Error

exact
Eq. ~A3!

Schlitter
Eq. ~A4!

100 690.774 810.044 17.2%
200 699.419 818.689 17.1%
300 704.476 823.746 16.9%
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE III. Entropy of argon at different temperatures calculated analytically@ideal gas Eq.~A3! and harmonic
Eq. ~A4!#, calculated numerically using a polynomial fit to the equation of state (Slj

exact) and calculated numeri-
cally @using Eq. ~10!, nc5no correlations included, cr5correlations included# from MD simulations of the
Lennard-Jones fluid. Entropies are in J K21mol21, T* is the temperature in reduced units.

T @K# (T* ) 200 ~1.668! 300 ~2.503! 400 ~3.337!

Analytical results
Sid

exact Eq. ~A3! @J K21mol21# 131.42 136.47 140.06
Sid

harm Eq. ~A4! @J K21mol21# 135.82 140.88 144.46
Correction from
equation of state
Scorr

eos @J K21mol21# (Scorr
eos* ) 222.840~22.747! 220.071~22.414! 218.292~22.200!

Numerical result from
equation of state
Slj

exact5Sid
exact1Scorr

eos @J K21mol21# 108.58 116.399 121.768
Numerical result
from simulation
Slj,nc

sim @J K21mol21# 132.08 138.48 142.76
Slj,cr

sim @J K21mol21# 101.14 110.79 117.24
Difference in %
nc ~correlations ignored! 21.6 19.0 17.2
cr ~correlations included! 6.9 4.8 3.7
K
no
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e

-
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gular box containing 962 methanol molecules. The 360
run involved a truncated octahedron with 1778 metha
molecules.13

Figure 1 shows the absolute entropy for all four tempe
tures. Since the rigid body motion is not removed autom
cally during the calculation, three different fitting procedur
are studied:

~1! No fit, all rigid body motion~translation and overall ro
tation! is kept,
pr 2002 to 129.125.7.87. Redistribution subject to AI
l

-
i-
s

~2! A translational fit, the centers of mass of the molecu
are mapped on top of each other~translation removed!,
and

~3! A least-squares fit on the positions of all atoms, i.e., rig
body ~translation, rotation! motion is removed.

All the fits are performed with reference to the first config
ration of the analyzed trajectory.

The steplike increase in the entropy in Fig. 1 is indic
panels:
the
on
FIG. 1. Entropy of theb-heptapeptide at different temperatures and using different fitting procedures. Upper panels: no fitting is performed; middle
the centers of mass of the trajectory configurations are superimposed~no overall translation!; lower panels: in addition, a rotational least-squares fit on
atom positions is carried out for the trajectory configurations~no overall translation and rotation!. On the left are the 200 ns simulations at 298 and 340 K,
the right the 50 ns simulations at 350 and 360 K.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE IV. Diffusion coefficientD; translational contribution to the entropyStrans for the b-heptapeptide and
entropy (S) and enthalpy (H) change upon folding: comparison between results from the simulationSsim

trans and
analytical valuesSid

trans. V is the average volume of the simulation box.

T
K

V
nm3

D
nm2ns21

Ssim
trans

J K21mol21
Sid

trans

J K21mol21
Sfold2Sunfold

J K21mol21
H fold2Hunfold

kJ mol21

298 61.665 0.7 189.94 186.77 2527 271
340 66.072 1.7 192.27 188.99 2608 287
350 66.925 1.6 191.69 189.46 2768 256
360 124.340 1.9 195.62 194.96 2873 292
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tive of the exploration of phase space by the peptide: e
jump opens up a new region of phase space. All simulati
were started in the folded~helical! configuration except for
the simulation at 360 K. This difference can be seen wh
comparing 350 and 360 K~Fig. 1, bottom panel at right-han
side!: while the folded peptide~350 K! stays in its native
conformation for 7 ns, the extended structure~360 K! expe-
riences a quick increase in entropy because it explores p
space more quickly. On the other hand at 340 K~Fig. 1,
bottom panel at left-hand side! the peptide unfolds within 2
ns.13

A. Rigid body motion: Translation

By using the fitting procedures described above, a se
ration of the rigid body motion from the internal motion ca
be attempted. The translation of the molecules can be s
rated exactly by a translational fit on the center of mass.
difference between the entropy calculated without fitting a
the entropy calculated with the translational fit yields t
translational entropy contributionStrans. The translational en-
tropy increases monotonically with the volume that
sampled@see Eq.~A3!# and levels off if the volume is finite
pr 2002 to 129.125.7.87. Redistribution subject to AI
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When applying periodic boundary conditions in a simulatio
the effective volume is finite since the molecule is set ba
into the box when it crosses the~periodic! box edge.

Table IV compares the results of the simulation,Ssim
trans,

and the analytical results,Sid
trans. The volume of the simula-

tion boxV is also given.Sid
transis the ideal gas contribution to

the absolute entropy of theb-heptapeptide~see Appendix A!.
Both values agree very well, which indicates that the co
plete volume of the box was sampled in the simulation. T
results from the simulationSsim

trans are consistently larger tha
the analytical results because Schlitter’s approximation
ways gives an upper bound to the true entropy. The ra
complete sampling of the box was confirmed by project
the position of the center of mass of theb-heptapeptide from
the whole trajectory onto the three orthogonal box axes~Fig.
2!. Only results for the three temperatures that were sim
lated in a rectangular box are shown; the fourth, simulated
a truncated octahedron, is omitted. All three temperatu
show a flat profile for all three axes, confirming comple
sampling of the simulation box.

With such extensive sampling a very reliable estimate
the diffusion constantD can be made. The diffusion consta
FIG. 2. DistributionP(x) of the center of mass of theb-heptapeptide projected onto thex, y, andz axes of the simulation box.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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was calculated from the mean-square displacement of
center of mass using the Einstein relation,1

2tD5 1
3 ^ur ~ t !2r ~0!u2& t . ~11!

Herer i(t) is the position of the center of mass at timet. The
mean-square displacement is shown in Fig. 3. It shows
expected linear relation at short times where the statistic
best. Using a linear regression in the linear regime at s
time scales the diffusion constants for all four temperatu
were calculated, see Table IV.

B. Rigid body motion: Rotation

In contrast to the separation of the translational moti
the separation of the overall rotation from the internal mot
is not unambiguous for flexible molecules. Overall rotati
and internal motion are highly coupled and a rotational lea
squares fit will only make sense for more rigid molecules

FIG. 3. Mean-square displacement~MSD! of the center of mass of the
b-heptapeptide as a function of time.
Downloaded 25 Apr 2002 to 129.125.7.87. Redistribution subject to AI
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Two different sets of atoms were used in the lea
squares fit to check the dependence of the results on
fitting procedure:

~1! All 64 atoms of the molecule were used with equ
weights.

~2! Only four atoms in the central residue~29-4N, 31-4CB,
32-4CG, 33-4CA! of the peptide were used.

The results are compared in Fig. 4. Naively one wou
expect a decrease in entropy with an increase in the num
of atoms used in the fit. In the case of 298 K this is true;
entropy calculated after performing a least-squares fit for
atoms is smaller compared to the entropy where only f
atoms were used in the fit. For the other temperatures
entropy is lower in the beginning for the all-atom fit b
higher afterward. At 298 K the peptide spends nearly all
the time ~98%! in the folded configuration5 and the least-
squares fit makes sense: By using more atoms in the fitt
the entropy is lowered. With increasing temperature the p
tide unfolds, sampling more diverse configurations that c
not be fitted easily onto the first configuration in the traje
tory. This can increase the entropy compared to a fit ba
on a few core atoms. For example, fitting all the atoms of
extended structure on to the rather spherical folded struc
of a short helix might artificially induce rotation and thu
induce considerable spurious internal motion.

There is no correct, unambiguous way to separate
overall rotation from the internal motion and Fig. 4 gives
estimate of 50 to 80 J K21 mol21 of the uncertainty in the
entropy calculation due to arbitrariness of the choice of
oms in the fitting procedure.

C. Rotational correlation times

To investigate to what extent the overall rotation of t
b-heptapeptide is sampled and to estimate the rotational
-
t

-

FIG. 4. Entropy of theb-heptapeptide
at all four temperatures after a transla
tional and rotational least-squares fi
using all atoms~dashed line! and using
only four atoms in the core of the pep
tide ~solid line!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 5. Distribution P(U) of the
anglesU between the axis of rotation
which corresponds to the largest mo
ment of inertia of theb-heptapeptide
and thex, y, andz axes of the simula-
tion box.
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relation function, the tensor of inertiaI was calculated for
each configuration in the trajectory. The elements of the
ertia tensorI are given by

I i j 5 (
k51

N

mk~x~k!2
d i j 2xi

~k!xj
~k!!. ~12!

Herexi
(k) is componenti of vectorx(k), which is the vector

from the center of mass to atomk andmk is the mass of atom
k. I is thus a three-dimensional quadratic symmetric mat
Diagonalization ofI yields the three moments of inertia~ei-
genvalues! and the three principal axes of rotation~eigenvec-
tors!.

Figure 5 shows the distribution of the anglesU between
the axis of rotation which corresponds to the largest mom
of inertia and the three edges of the simulation box. T
results were weighted with 1/sinU. There are only two pos
sible orientations for an axis to be parallel to a particu
edge of the simulation box, while there is a multitude
orientations for an axis to be perpendicular to a particu
edge. The rather flat profiles in Fig. 5 confirm a compl
sampling of the overall rotation of the molecule.

The rotational correlation times can be estimated fr
the rotational correlation functions

C~ l !~ t !5^Pl@ui~t1t !•ui~t!#&, ~13!

whereui(t) is a unit vector along one of the three axes
rotation at timet andPl(x) is the l th Legendre polynomial.

C(1)(t) andC(2)(t) are shown in Fig. 6 for the principa
axis of rotation which corresponds to the largest momen
inertia and for all four temperatures. The figure shows t
the rotational correlation time decreases with higher te
perature. The 350 and 360 K simulations are very simi
which is also evident from all other results. The logarithm
plot shows a linear regime from which the correlation tim
can be calculated using a linear regression. The correla
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times t1 from P1 vary between 80 and 175 ps, while th
correlation timest2 from P2 vary between 50 and 130 ps.

VI. ENTROPY OF FOLDING

The configurations of the MD trajectory were identifie
as folded or unfolded conformations using an ato
positional root-mean-square deviation~RMSD! criterion for
the backbone atoms of residues 2-6: a peptide configura
with an RMSD with respect to the helical NMR model stru
ture smaller than 0.1 nm is considered to be folded, a c
figuration with this RMSD larger than 0.15 nm as unfolde
Using only folded configurations in the entropy calculati
yields the entropy of the folded state; the unfolded config
rations yield the unfolded state. The entropy change of
peptide upon folding is given in Table IV. The loss in e
tropy upon folding of the peptide is substantial and increa
with increasing temperature. The enthalpy change of the p
tide upon folding is also given in Table IV. It is negative, b
not sufficiently negative to compensate for the loss of p
tide entropy upon folding. The free energy change of
peptide is positive for all four temperatures. Yet, accord
to the relative population of folded versus unfolded conf
mations present in the MD trajectory, the free energy of fo
ing of the complete system, i.e., peptide and solvent, is ne
tive at 298 K and slightly positive~a few kJ mol21! at the
other temperatures. This means that the change in free
ergy of the peptide alone upon folding cannot explain
observed folding behavior. An increase in the entropy of
solvent and a loss in peptide–solvent correlation seem
contribute non-negligibly to the folding process. This und
lines the important role of the solvent in peptide folding.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 6. Rotational correlation func-
tions ~1st and 2nd Legendre polyno
mial! of the first eigenvector of the in-
ertia tensor of theb-heptapeptide. On
the right the logarithmic plot shows
the linear regime at small time scales
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VII. CONCLUSIONS

The formula proposed by Schlitter provides an eleg
way to calculate entropies from molecular dynamics traj
tories. It has been shown to give generally good results
only the harmonic approximation is critical. In the case
the ensemble of harmonic oscillators this approximation
fulfilled and the simulation results are in perfect agreem
with the analytical results. The ideal gas represents the w
case for the harmonic approximation and Schlitter’s form
yields errors around 17% for typical temperatures that
used in simulations. These are still acceptable errors con
ering the quality and convergence problems of the calc
tion of any entropic quantity. For interacting particles t
harmonic approximation does better, even for the Lenna
Jones fluid where the potential is rather anharmonic. T
error is reduced to around 5%.

In the case of theb-heptapeptide different contribution
to the entropy could be calculated by using different ove
translational, rotational fitting schemes. It could be sho
that with sufficient sampling Schlitter’s method is not r
stricted to conformational entropies but that translational
rotational contributions can also be calculated. The effec
the fitting procedure on the entropy cannot be neglected
a consistent approach should be used to make the re
comparable. The possibility of neglecting the correlation
tween atoms makes the investigation of the cooperative
ture of movements in molecules possible. For systems of
size of small peptides, entropy calculations are viable us
Schlitter’s method and will help to give new insights in
their behavior.

The entropy and enthalpy change of the peptide u
folding are both negative at all four temperatures conside
and lead to a positive free energy change of the peptide u
folding. Since the peptide is predominantly folded in t
simulation at room temperature, this result means t
Downloaded 25 Apr 2002 to 129.125.7.87. Redistribution subject to AI
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changes in the solvent entropy and peptide–solvent corr
tion cannot be ignored when explaining peptide folding.
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APPENDIX A: ENTROPY OF AN IDEAL GAS

The translational part of the single-particle partitio
function q is given by

qtrans5S 2pmkBT

h2 D 3/2

V, ~A1!

wherem is the mass andV is the volume of the box in which
the particle moves. If we take an ensemble ofN noninteract-
ing distinguishable particles the canonical partition functi
is Q5qN. The entropy in the canonical ensemble is given

S5
E

T
1kB ln Q5kBTS ] ln Q

]T D
V

1kB ln Q, ~A2!

whereE is the energy difference betweenT and absolute zero
temperature. The molar entropy for an ideal gas is there
given by

Sideal5
3

2
R1R lnF S 2pmkBT

h2 D 3/2

VG . ~A3!

It is also possible to calculate the entropy of an ideal g
using Schlitter’s approximation Eq.~5!. First the variance
^x2&c must be calculated. For the ideal gas the distribution
positions of a particle in a box should be uniform in each
the three dimensions. Therefore the normalized probab
P(x) of finding a particle at positionx is a constant:P(x)
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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5L21, assuming a cubic box of lengthL. Assuming a mean
^x&50 we get the variancêx2&c5L2/12. The covariance
matrix is given bys51^x2&c and Eq.~10! simplifies to

S85
3NkB

2
lnS 11

L2mikBTe2

12\2 D . ~A4!
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