JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 18 8 NOVEMBER 2000

Absolute entropies from molecular dynamics simulation trajectories
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A heuristic formula for calculating absolute entropies from the covariance matrix of atom-positional
fluctuations was extensively tested. Because of its heuristic nature, the results obtained are
compared to analytical expressions for an ensemble of harmonic oscillators, for the ideal gas, and
to numerical results obtained from the equation of state for the Lennard-Jones fluid as a means of
validation of the approximate formula for the entropy. The formula yields rather accurate results.
The removal of translational and rotational rigid body motion and the effect of the various fitting
procedures involved are discussed for the more realistic systemgefieptapeptide in solution.
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I. INTRODUCTION are obtained for the temperature approaching zero or
infinity.> The numerical tests presented in Ref. 9 were, un-
Molecular dynamics(MD) simulations are a well- fortunately, of limited value. Here, Schlitter's heuristic for-
established tool to investigate the stability and behavior omula is extensively tested with the aim of its validation. Sec-
systems ranging from abstract models to complex moleculasnd, as the method allows us to use Cartesian coordinates
assemblies of biological intereSt The energetics of these and does not restrict us to the configurational entropy, it is
systems is easily accessible using MD and even relative fregsed to investigate entropic effects in the reversible folding
energies are now routinely calculated, albeit at a high comef a small peptidé. We have implemented Schlitter’s for-
putational cost. However, the calculation of entropies remula to work with thecrRomosgsesimulation package®!!
mains complicated because the entropy depends on the

whole phase space of the system of intefeEhis is true Il. METHOD
even for entropy differences.
Most method5® for entropy calculations based on MD SchlitteP introduced a very elegant formula to calculate

simulations have been restricted to the configurational enabsolute entropies from MD trajectories using the covariance
tropy of a molecule as the sampling of the translation andnatrix of atom-positional fluctuations. In this section we
rotation of the molecule was not complete. These methodgummarize the heuristic derivation of Schlitter's formula in
used a transformation to internal coordinates to separate tHder to clarify the approximations on which it is based.
slow overall motions from the comparably fast internal mo- ~ The formula is based on a quantum-mechanical treat-
tions. Complications due to the handling of constraints werénent of a one-dimensional degree of freedowith states
usually neglected. To calculate entropies the probability distn).n=0,1,2,.... The energy of each statecjs the mass of
tribution of each degree of freedo®@OF) must in principle ~ Xis M, and its _mearéx) is assumed to be zero. The canonical
be known. However, it is notoriously difficult to sample Partition function at temperature is

probability distributions, especially their tails. A typical ap-

proximate solution to this problem is the assumption of a Z=E exp(— Ben), (1)
particular functional form for the probability distribution. 3

Karplus and Kushickused a Gaussian form for each internal with 8= 1/kgT, the Boltzmann constarki; and temperature
degree of freedontbonds, bond angles, dihedralend the T. The complete entrop$ of the system can be expressed
correlation between them. Di No&t al8 tried a combination  using the probabilityp,= exp(— Be,)/Z of finding the system

of direct sampling for each degree of freedom and a Gausdh Staten as

ian approximation for the correlation. They found that the

inclusion of correlations was important. The Gaussian ap- S=—kBE pnlnp,. (2
proximation to the probability distribution of each degree of .
freedom seemed to be appropriate. For a given expectation valyensemble averagef the vari-

In 1993, Schlittet proposed yet another approximate ance (x2)=3,p,(n|x?In), the entropy is maximized by
method that is rationalized using the Gaussian approximationarying the probabilitiep,. The variancex?) and the nor-
to the probability distribution but elegantly circumvents the malization of the probabilities, p,=1 are taken into ac-
need to express the entropy in internal coordinates. Schlittount as constraints using Lagrange multipliers.
ter's formula is of heuristic nature and constitutes an upper  This results in the demand that the energy of each state
bound to the entropy. The approximate formula was rationalmust be proportional to the state’s varianeg= (n|x?|n). A
ized by showing that the correct quantum and classical limitsystem for which this condition is fulfilled is the simple har-
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monic oscillator (SHO). The entropy S, Of a one-
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Taking the product of the diagonal elements of a diagonal

dimensional simple harmonic oscillator can be expressefhatrix as in Eq(9) is equivalent to calculating the determi-

analytically as

kBa
S<Sh= a7 ksIn[1—e “], 3
e*—1
wherea=hw/kgT, i=h/27, w is the frequency of the os-
cillator, and h is Planck’s constant. It was shown by
SchilitteP that the entropy of the harmonic oscillat8g, is
an upper bound for th#zue entropyS of the system.
The frequencyw of the oscillator depends on the

quantum-mechanically defined varian¢e’) and must be

nant of the matrixo”’. Because the determinant of a matrix is
invariant under any orthogonal transformation E).can be
rewritten as

2

;1 kgTe
S =§kBInde 1+—ﬁrMﬂ' (10)

Therefore, the transformation to an internal, non-Cartesian
set of coordinates is not necessary. To calculate the entropy
using Eq.(10), it is only necessary to calculate the covari-
ance matri¥Eq. (7)] from a trajectory. The correct quantum-

Connected to the C|assica| Varian@é>c that can be mea- mechanical I|m|t f0r high'frequency mOtiOI’l iS Obtained W|th
sured in classical simulations. As a connection, the equipaEd. (10), because a covariance matrix whose elements are all

tition theorem

mw?(x?).=kgT

(4)

is used. The equipartition theorem holds only in the limit
hw<<kgT. This approximation is likely to be good because
in a molecule the high-frequency motions for which it fails
will contribute very little to the entropy.

vanishingly small will give an entropy of zero.

Very slow motions like the center of mass motion of a
larger molecule can lead to a constantly increasing variance
and therefore to a convergence problem in the entropy cal-
culations based on E¢10). A simple translational fit on the
centers of mass of the molecules at the various time points,
however, will remove the center of mass motion and lead to

In the generalization of the formula to many degrees offhore rapidly converging results. The missing entropy contri-

freedom it is simpler to use an approximation to E8)
which was introduced and rationalized by Schilifter,

2

1 e
SSSShO<S,:§kB|n 1+? (5)
1 keT€”
=§kBIn 1+ . m{x“)|. (6)

Heree=exp(1) is Euler's number.

A. Many degrees of freedom

bution (the ideal gas contributigrcan be calculated analyti-
cally, if required.

B. Approximations

Several approximations are used in the derivation of the
formula described above:

(1) Every degree of freedom is treated as a quantum har-
monic oscillator,

(2) The equipartition theorem is used to connect the classi-
cal variance and the frequency of a quantum harmonic

The generalization to many degrees of freedom is based oscillator[Eq. (4)], and

on the covariance matrixr of the atom-positional fluctua-
tions with the elements

aij =i = (X)) (= (X)), (7)

wherex,,...Xgy are the Cartesian coordinates of irpar-
ticle system. The covariance matrix can also be expressed
mass-weighted coordinates= x;y/m; and becomes

o' =M*eM’=Mo, ®)

whereM = MY2M¥2 s the mass matrix of rankN8 in which
the diagonal elements hold the masses mfd-0 fori+j.
The last identity holds becaugeandM 2 are both symmet-
ric matrices.

The mass-weighted covariance matrix can be diagonal
ized, giving a new set afincorrelated(the off-diagonal ele-
ments are Pcoordinatesy;. For each of these new degrees
of freedom the entropy can be calculated with E&j).and the
variances g3 ). which are the diagonal elements of the ma-
trix o' (expressed in the coordinatgg,

3N

1 kgT€?
S<S'=Zkg> In|1+—m(0?)c
284 i

@)

kgTe€?
ﬁZ

1 3N
EkBIn<iHl 1+ 9)

(3) An approximate expressidiq. (5)] for the entropy of a
quantum harmonic oscillator is used.

As stated above, the second approximation is not ex-
pected to give rise to any significant errors, as high-
frequency motions will contribute little to the entropy. The
third approximation can also be shown to be very good over
the whole range of molecular frequencies

The first approximation might break down depending on
the type of system that is examined. Bond vibrations, angle-
bending, and torsional-angle motions in a molecule are prob-
ably well described by a harmonic approximation. The mo-
tion of a molecule inside a solvent, on the other hand, is
|probably a bad case for an harmonic approximation. Section
IV B examines these effects in detail for the entropy of a
Lennard-Jones fluid.

llI. STOCHASTIC DYNAMICS OF HARMONIC
OSCILLATORS

The simplest system to test Schlitter's formula is an en-
semble of independent classical harmonic oscillators. The
results can be calculated analytically and checked against the
results from simulations.

One hundred completely independent, noninteracting
particles of mass 15.994 amu were harmonically restrained
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TABLE I. Entropy of an ensemble of 100 independent three-dimensionalTABLE II. Molar entropy of an ideal gagmass 16 amuin J K™ 'mol™* at
harmonic oscillators. Values from the stochastic dynamics simulation aralifferent temperatures. Exact analytical values obtained usingA3).are
compared to analytical resultéExact method Eq. (3)] and Schlitter's ap-  compared to analytical values using Schlitter’'s approximation,(&4).

proximation[Eq. 5].)

T Sideal
Method Senod K'1mol ™t K JK tmol™? Error
SD simulation: exact Schlitter
full covariance matrix 33.449 Eq. (A3) Eq. (A4)
only diagonal elements 36.897 100 690.774 810.044 17.2%
Analytical calculations: 200 699.419 818.689 17.1%
Exact using Eq(3) 36.9782 300 704.476 823.746 16.9%

Schlitter using Eq(5) 36.9784

ing the parameters of theromosgs force field® version
43A1 (e/kg=119.8 Ko=0.341nm) was set up in a cubic
box with an edge length of 2.3 nriireduced densityp*
=0.834). The system was simulatétime step=2 fs) at
constant volume (volume12.2 nn?) and constant tempera-
Sures:T=200, 300, 400 K. At each temperature the systems
were simulated for 200 ps and the entropy calculated over
the whole 200 ps trajectory. The entropy was calculated ig-

from leaving their initial position with a force constant of 25
kJ mol tnm™2. They were given initial velocities according
to a Maxwell-Boltzmann distribution at 300. 1 nssto-
chastic dynamics simulation with a friction coefficient of 10
ps ! at a temperature of 300 K was performed using th
GROMOS simulation packag&”!! The time step was set to
0.01 ps.

. Th'? setup yle_lds a SVStem of 3.00 independent, Onehoring correlations -iﬂ‘c) and with all correlations included
dimensional classical harmonic oscillators whose entrop)(sﬁig]r : i,

can be calculated analytically using E@) (exact expres- The numerical results obtained from the simulations are

sion) or_Eq. (5) (Schlitter's approxmatlo)d compared to numerical results which were obtained by cal-
Taking the generated trajectory the entropy can be cal-

H P aci _
culated using the covariance matfiq. (10)]. When using Culating the entropy of an ideal gas{{*) exactly and af

. . ) . terwards correcting for the interaction between the particles.
the full covariance matrix the entropy will be slightly low- 9 P

. . . This correction, the residual entropy of a Lennard-Jones fluid
ered because of spurious correlations that arise from the fi- by

nite numerical accuracy and finite simulation length. Thes Scon), Was calculated numerically using a polynomial fit to

. S : he equation of state of the Lennard-Jones fldid.
correlations are in this case an artifact and unwelcome when
Table 11l shows the results. In the case of complete ne-

comparing to analytical results for truly independent oscilla- lect of any correlation between the particleﬁfi[(l) the
j’ )

tors with zero correlations. The spurious correlations areg . e
i . . -entropy of the Lennard-Jones fluid is very similar to the en-
omitted by using only the diagonal elements of the covari- . Yac . o
L . . tropy of an ideal gas ;°°). Taking the correlation into
ance matrix in the calculation. The results are summarized in ime . . .
Table | account, the entropyﬁvcr) is drastically lowered. This again

The exact resulfEq. (3)] is slightly smaller than the illustrates that for the ideal gas the harmonic approximation

L . . . is poor.
result from Schlitter’'s approximatiofEq. (5)], showing that pThe difference between the entroﬁﬁim from the simu-
the latter approximation is always an upper bound to thqati ocr

’ T : . on including all correlations and the corrected entropy
exact value. The results of the simulation ignoring Spurious_eyact : . .

. . . <~ calculated numerically from the equation of state is
correlations agree well with the analytical results. J

also given in Table Il and ranges between 6.9% and 3.7%.
IV. SIMPLE MANY-PARTICLE SYSTEMS The difference is significantly smaller than in the case of the

ideal gas.
A. The ideal gas

For the ideal gas it is possible to calculate the entropyy. ENTROPY CALCULATIONS FOR A
analytically, either through classical statistical mechanics oB-HEPTAPEPTIDE IN SOLUTION
using Schlitter’'s approximatiofsee Appendix A

The molar entropy of an ideal gas with a volume of
22.41/mol was calculated for a range of temperatures usin
both methodgsee Table I). Clearly Schlitter's method gives

The ensemble of harmonic oscillators and the Lennard-
éones fluid are highly idealized test systems in which a num-
er of important aspects of more realistic systems are not

an upper bound to the exact value. The ideal gas represen?‘gdressed’ e.g., presence of internal degr_ees of freedqm (.)f a
olecule. Therefore, the formula was applied to a peptide in

the worst case for the harmonic approximation used i . : ! !
bp solution which has been extensively studied and

Schlitter’'s formula explaining the relatively large errors. The h terized A B-hept tide i thanol imulated
error is only slightly decreasing with increasing temperature.C aracterized. A-heptapeptide in methanol was simufate
at different temperatures. The peptide undergoes reversible

folding in the simulations and the ratio of folded to unfolded
structures decreases with increasing temperature from 49 to 1
The Lennard-Jones fluid is used as a more realistic tesit 298 K to 1 to 3 at 360 K. For 298 and 340 K, 200 ns
system for which numerical values for the entropy are stilltrajectories, and for 350 and 360 K, 50 ns trajectories, were
available for comparison. A system of 256 argon atoms usavailable. The first three simulations were done in a rectan-

B. The Lennard-Jones fluid
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TABLE lIl. Entropy of argon at different temperatures calculated analytidadigal gas Eq(A3) and harmonic
Eq. (A4)], calculated numerically using a polynomial fit to the equation of slﬁﬁéa‘() and calculated numeri-
cally [using Eq.(10), nc=no correlations included, ercorrelations includedfrom MD simulations of the
Lennard-Jones fluid. Entropies are in J%hol™, T* is the temperature in reduced units.

T[K](T*) 200(1.668 300(2.503 400 (3.337)
Analytical results
SEeEq. (A3) [JK tmol ™Y 131.42 136.47 140.06
ShamEq. (A4) [ K 'molY] 135.82 140.88 144.46

Correction from

equation of state

SEos [J K tmol 1] (SEosx —22.840(—2.747 —20.071(—2.419 —18.292(—2.200
Numerical result from

equation of state

S S5 Ston [J K tmol 1] 108.58 116.399 121.768
Numerical result

from simulation

aﬁfpﬂc [JK mol™] 132.08 138.48 142.76
v [ K tmol ] 101.14 110.79 117.24

Difference in %

nc (correlations ignored 21.6 19.0 17.2

cr (correlations included 6.9 4.8 3.7

gular box containing 962 methanol molecules. The 360 K(2) A translational fit, the centers of mass of the molecules
run involved a truncated octahedron with 1778 methanol are mapped on top of each othgmnslation removed
molecules™® and

Figure 1 shows the absolute entropy for all four tempera(3) A least-squares fit on the positions of all atoms, i.e., rigid
tures. Smce the rigid bc_>dy motion is not rem_oved automati- body (translation, rotationmotion is removed.
cally during the calculation, three different fitting procedures

are studied: Al the fits are performed with reference to the first configu-
(1) No fit, all rigid body motion(translation and overall ro- ration of the analyzed trajectory.
tation) is kept, The steplike increase in the entropy in Fig. 1 is indica-
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FIG. 1. Entropy of thes-heptapeptide at different temperatures and using different fitting procedures. Upper panels: no fitting is performed; middle panels:

the centers of mass of the trajectory configurations are superimgosesierall translation lower panels: in addition, a rotational least-squares fit on the
atom positions is carried out for the trajectory configuratiorsoverall translation and rotatiprOn the left are the 200 ns simulations at 298 and 340 K, on
the right the 50 ns simulations at 350 and 360 K.
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TABLE IV. Diffusion coefficient D; translational contribution to the entrofg/2"sfor the g-heptapeptide and
entropy ) and enthalpy i) change upon folding: comparison between results from the simulgffifiand
analytical valuesSi?™. V is the average volume of the simulation box.

T \Vi D Str_ans St&ans Sfoldf Sunfold Hfoldf Hunfold
sim
K nm’ nnéns* JK 'mol™* J K *mol™* JK *mol™* kJ mol*
298 61.665 0.7 189.94 186.77 —-527 -71
340 66.072 1.7 192.27 188.99 —608 —-87
350 66.925 1.6 191.69 189.46 —768 —56
360 124.340 1.9 195.62 194.96 —-873 -92

tive of the exploration of phase space by the peptide: eacivhen applying periodic boundary conditions in a simulation,
jump opens up a new region of phase space. All simulationthe effective volume is finite since the molecule is set back
were started in the foldethelical) configuration except for into the box when it crosses tl{periodio box edge.
the simulation at 360 K. This difference can be seen when  Table IV compares the results of the simulati@f>",
comparing 350 and 360 Kig. 1, bottom panel at right-hand and the analytical result§2". The volume of the simula-
sidg: while the folded peptidé350 K) stays in its native tion boxV is also givenS{?"is the ideal gas contribution to
conformation for 7 ns, the extended Stl’UCt([BéO K) expe- the absolute entropy of tl’lé.heptapep“désee Appendix A
riences a quick increase in entropy because it explores phaggyth values agree very well, which indicates that the com-
space more quickly. On the other hand at 340Mg. 1,  plete volume of the box was sampled in the simulation. The
bOtltsf)m panel at left-hand sigiéhe peptide unfolds within 2. resyits from the simulatio!2" are consistently larger than
ns. the analytical results because Schlitter's approximation al-
ways gives an upper bound to the true entropy. The rather
A. Rigid body motion: Translation complete sampling of the box was confirmed by projecting

By using the fitting procedures described above, a sepdhe position of the center of mass of teheptapeptide from
ration of the rigid body motion from the internal motion can the whole trajectory onto the three orthogonal box akég.
be attempted. The translation of the molecules can be sepd). Only results for the three temperatures that were simu-
rated exactly by a translational fit on the center of mass. Théated in a rectangular box are shown; the fourth, simulated in
difference between the entropy calculated without fitting anca truncated octahedron, is omitted. All three temperatures
the entropy calculated with the translational fit yields theshow a flat profile for all three axes, confirming complete
translational entropy contributic®"S The translational en- sampling of the simulation box.
tropy increases monotonically with the volume that is  With such extensive sampling a very reliable estimate of
sampledsee Eq(A3)] and levels off if the volume is finite. the diffusion constand can be made. The diffusion constant
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% 002 7
n- -------- .
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0. f
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3 0.02 : -
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0.01 | -
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0 1 ] ] 1 1 1 i
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FIG. 2. DistributionP(x) of the center of mass of th@-heptapeptide projected onto they, andz axes of the simulation box.
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Two different sets of atoms were used in the least-
squares fit to check the dependence of the results on the
fitting procedure:

(1) All 64 atoms of the molecule were used with equal
weights.

(2) Only four atoms in the central resid29-4N, 31-4CB,
32-4CG, 33-4CA of the peptide were used.

MSD [nm?)

The results are compared in Fig. 4. Naively one would
expect a decrease in entropy with an increase in the number
of atoms used in the fit. In the case of 298 K this is true; the
entropy calculated after performing a least-squares fit for all
atoms is smaller compared to the entropy where only four

] atoms were used in the fit. For the other temperatures the
FIG. 3. Mean-square displacemefMSD) of the center of mass of the €ntropy is lower in the beginning for the all-atom fit but
B-heptapeptide as a function of time. higher afterward. At 298 K the peptide spends nearly all of

the time (98%) in the folded configuratiohand the least-

_ squares fit makes sense: By using more atoms in the fitting,
was calculated from the mean-square displacement of th@e entropy is lowered. With increasing temperature the pep-
center of mass using the Einstein relatfon, tide unfolds, sampling more diverse configurations that can-

t be fitted easily onto the first configuration in the trajec-
2tD= L(|r(t) = r(0)[?);. 17) Notbel : .
t 3(IrO=rOF). (12) tory. This can increase the entropy compared to a fit based
. . . on a few core atoms. For example, fitting all the atoms of an
Herer;() is the position of the center of mass at tim@he extended structure on to the rather spherical folded structure

mean-square displacement is shown in Fig. 3. It shows th.gf a short helix might artificially induce rotation and thus

expected linear relation at short times where the statistics is . . . )
|{1duce considerable spurious internal motion.

best. Using a linear regression in the linear regime at shor There is no correct, unambiguous way to separate the

time scales the diffusion constants for all four temperatures . . . . .
overall rotation from the internal motion and Fig. 4 gives an
were calculated, see Table IV.

estimate of 50 to 80 J K mol™! of the uncertainty in the
entropy calculation due to arbitrariness of the choice of at-
B. Rigid body motion: Rotation oms in the fitting procedure.

In contrast to the separation of the translational motion,
the separation of the overall rotation from the internal motionc Rotational correlation times
is not unambiguous for flexible molecules. Overall rotation ™
and internal motion are highly coupled and a rotational least-  To investigate to what extent the overall rotation of the
squares fit will only make sense for more rigid molecules. B-heptapeptide is sampled and to estimate the rotational cor-
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3000 : . . . 3000 using all atomgdashed lingand using
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relation function, the tensor of inertlawas calculated for times r; from P, vary between 80 and 175 ps, while the
each configuration in the trajectory. The elements of the incorrelation timesr, from P, vary between 50 and 130 ps.
ertia tensoll are given by

N
2 k) (k
Iij :kzl mk(X(k> 5” _Xi( )XJ( )) (12)
Herex® is component of vectorx®, which is the vector ¥ ENTROPY OF FOLDING

from the center of mass to atokrandm, is the mass of atom ) . . . -
. : . . : . The configurations of the MD trajectory were identified
k. I is thus a three-dimensional quadratic symmetric matrix.

Diagonalization ofl yields the three moments of inertfai- as folded or unfolded conformations using an atom-

- - itional root-mean-square deviati@MSD) criterion for
envaluesand the three principal axes of rotatitigenvec- P2 ) . . .
'?ors) g P P ®ig the backbone atoms of residues 2-6: a peptide configuration

Figure 5 shows the distribution of the angl@setween with an RMSD with respect to the helical NMR model struc-

the axis of rotation which corresponds to the largest momerit'® Smaller than 0.1 nm is considered to be folded, a con-

of inertia and the three edges of the simulation box. Thdiguration with this RMSD larger than 0.15 nm as unfolded.
results were weighted with 1/séh. There are only two pos- Using only folded configurations in the entropy calculation

sible orientations for an axis to be parallel to a particularYi€lds the entropy of the folded state; the unfolded configu-
edge of the simulation box, while there is a multitude offations yield the unfolded state. The entropy change of the
orientations for an axis to be perpendicular to a particulaiPeptide upon folding is given in Table V. The loss in en-
edge. The rather flat profiles in Fig. 5 confirm a completelfopy upon folding of the peptide is substantial and increases
sampling of the overall rotation of the molecule. with increasing temperature. The enthalpy change of the pep-

The rotational correlation times can be estimated frontide upon folding is also given in Table IV. It is negative, but
the rotational correlation functions not sufficiently negative to compensate for the loss of pep-

Dren_ tide entropy upon folding. The free energy change of the

CUM=(Plu(r+1)-u(n]), (13 peptide is positive for all four temperatures. Yet, according
whereu;(t) is a unit vector along one of the three axes ofto the relative population of folded versus unfolded confor-
rotation at timet and P,(x) is thelth Legendre polynomial. mations present in the MD trajectory, the free energy of fold-

Cc(t) andC®(t) are shown in Fig. 6 for the principal ing of the complete system, i.e., peptide and solvent, is nega-
axis of rotation which corresponds to the largest moment ofive at 298 K and slightly positivéa few kJ mol*) at the
inertia and for all four temperatures. The figure shows thabther temperatures. This means that the change in free en-
the rotational correlation time decreases with higher temergy of the peptide alone upon folding cannot explain the
perature. The 350 and 360 K simulations are very similarpbserved folding behavior. An increase in the entropy of the
which is also evident from all other results. The logarithmicsolvent and a loss in peptide—solvent correlation seem to
plot shows a linear regime from which the correlation timescontribute non-negligibly to the folding process. This under-
can be calculated using a linear regression. The correlatiolines the important role of the solvent in peptide folding.
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VII. CONCLUSIONS changes in the solvent entropy and peptide—solvent correla-

) . tion cannot be ignored when explaining peptide folding.
The formula proposed by Schlitter provides an elegant

way to calculate entropies from molecular dynamics trajeccx NOWLEDGMENT

tories. It has been shown to give generally good results and . _ o

only the harmonic approximation is critical. In the case of ~ We would like to thank Xavier Daura for providing the
the ensemble of harmonic oscillators this approximation igrajectories Of_ the heptgpeptlc_je simulations and E_mlle Apol
fulfilled and the simulation results are in perfect agreementor helpful scripts and discussions about the equation of state
with the analytical results. The ideal gas represents the wor&f the Lennard-Jones liquid.

case for the harmonic approximation and Schlitter’'s formula

yields errors around 17% for typical temperatures that aréd\PPENDIX A: ENTROPY OF AN IDEAL GAS

u;ed in S|mulqt|ons. These are still acceptable errors consid- 114 translational part of the single-particle partition
ering the quality and convergence problems of the CaICUIafunction i

. . ; . . . g is given by

tion of any entropic quantity. For interacting particles the

harmonic approximation does better, even for the Lennard- [ 2mmkgT
Jones fluid where the potential is rather anharmonic. The “tans— h?

error is reduced to around 5%. . . . .
: . . wherem s the mass an¥l is the volume of the box in which
In the case of thgs-heptapeptide different contributions the particle moves. If we take an ensembléNafioninteract-
to the entropy could be calculated by using different overall P '

translational, rotational fitting schemes. It could be shown"Y distinguishable particles the canonical partition function

that with sufficient sampling Schlitter’'s method is not re- is Q=g". The entropy in the canonical ensemble is given by
stricted to conformational entropies but that translational and E aInQ
rotational contributions can also be calculated. The effect of S~ ?“LkB InQ= kBT(T
the fitting procedure on the entropy cannot be neglected and

a consistent approach should be used to make the resuldiereE is the energy difference betwe&rand absolute zero
comparable. The possibility of neglecting the correlation betemperature. The molar entropy for an ideal gas is therefore
tween atoms makes the investigation of the cooperative naiven by

3/2
V, (A1)

+kgInQ, (A2)
\Y

ture of movements in molecules possible. For systems of the 2rmkg T\ 32
size of small peptides, entropy calculations are viable using Sdea,=§ R+RIn (T V}. (A3)
Schlitter's method and will help to give new insights into

their behavior. It is also possible to calculate the entropy of an ideal gas
The entropy and enthalpy change of the peptide upomsing Schlitter’s approximation Ed5). First the variance
folding are both negative at all four temperatures consideredx?). must be calculated. For the ideal gas the distribution of
and lead to a positive free energy change of the peptide upgmositions of a particle in a box should be uniform in each of
folding. Since the peptide is predominantly folded in thethe three dimensions. Therefore the normalized probability
simulation at room temperature, this result means thaP(x) of finding a particle at positiox is a constantP(x)
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