Self-organized peptide lipid complexes: Peptide induced transmembrane water pores.

Pore Forming Peptide Toxins: Models of Membrane Protein Assembly

- Released into the environment
- Soluble in water
- Recognize and bind specifically to membranes
- Assemble spontaneously into functional complexes

Antimicrobial Peptides: Case 2 Melittin

Principle component of Bee venom 26 amino acids.

+6 charge at pH 7.0

Acts by forming toriodal pores

Gly-Ile-Gly-Ala-Val_leu_lys-Val-Leu-Thr-Thr-Gly-Leu-Pro- Ala-Leu-Ile-Ser-Trp-Ile-Lys-Arg-Lys-Arg-Gln-Gln-NH2

6 melittin, GROMOS 43a2 FF 128 DPPC (Berger Parameters) NP_{||}P_zT ensemble; Reaction Field; PBC Temp. 323K; SPC water

Durba Sengupta

Effect of Melittin on Lipid Bilayers

 $Sengupta\ et\ al.\ \textit{Biochim. Biophys. Acta-Biomembranes.}\ 2008,\ \textbf{1778},\ 2308-2317.$

Effect of Melittin on Lipid Bilayers

- A. Below a critical concentration pores did not form.
- B. Pores did not form if the peptides did not cluster.
- C. Pore formation required at least 3 peptides.
- D. Screening the charge interactions slows pore formation.
- E. Removing positively charged amino acids blocks pore formation.

Durba Sengupta

Disordered Model For a Toroidal Pore

Peptides not fully Inserted Partially Unfolded

Mechanism

- · Asymmetric binding of peptides induces stress in second layer.
- · Spontaneous formation of pore.
- · Pore stabilized by binding primarily to the entrance of the pore.

Advantages:

- Simple
- · Does not require insertion of peptides into lipid matrix.
- Pore metastable (Collapse as peptides migrate through the pore?).

Structure in membrane mimic environments

Mode of Action

- ▶ Positive curvature linked to formation of toroidal pores and micelles, compared to H₁
- ▶ **Negative** curvature explained by the aggregate model, non-bilayer intermediate resembles H_{II}
- ▶ **Cubic** phases can lead to porous membrane structure or fragmentation into micelle like structures

8/25/10

Name/Title of the presentation to be changed 24 on the master page

• Peptides lining channel walls

• Peptide binding to surface

 Cause formation of highly curved micelles after breaking the bilayer

8/25/10

Name/Title of the presentation to be changed 25 on the master page

Sequence

Peptide	Sequence	AA	Net charge
Aurein 1.2	${\it GLFDIIKKIAESF-NH}_2$	13	+1
Citropin 1.1	${\it GLFDVIKKVASVIGGL-NH}_2$	16	+2
Maculatin 1.1	GLFGVLAKVAAHVVPAIAEHF-NH ₂	21	+3
Caerin 1.1	GLLSVLGSVAKHVLPHVVPVIAEHL-NH ₂	25	+4

Aurein with PG-Cardiolipin membrane 60/40% PG/CL (tail ratio)

8/25/10

The interaction of Kalata B1 within membranes (binding and self-assembly)

Rong Chen August 25, 2010

Introduction

- Kalata B1 (KB1)
 - A 29-residue cyclic peptide isolated from plants
 - Remarkably stable structure
 - Head-to-tail cyclic backbone
 - Three disulfide bonds between 6 Cysteines
 - Biological activities include
 - Antivirus, antimicrobial, antifouling, etc.
 - Mechanism of action
 - Membrane mediated

August 25, 2010

Structural representation of KB1

Rosengren et al. 2003. J. Biol. Chem. 278:8606

Aims

- To investigate
 - How KB1 binds to membranes
 - The association of KB1 into oligomers
 - How KB1 may form trans-membrane water-filled pores

August 25, 2010

39

Methods

- Molecular dynamics simulations
 - GROMOS 53a6 force field
 - GROMACS 3.3.3 simulation engine
 - 4 fs time step
 - Twin-range cutoff (o.8 nm, 1.4 nm)
 - Reaction field
 - Berendsen weak-coupling method (NpT)

August 25, 2010

40

Initial structures 1 copy of KB1 POPC bilayer 64 lipids/leaflet Explicit water Na+ and Cl- (o.1 mol/L) 300K→350K

Spatial structure of KB1 in DPC micelles derived from experiment

Aggregation Studies

- Initial structures
 - 4 or 8 copies of KB1 (~6mM/L)
 - POPC bilayer
 - 128 lipids/leaflet for 4 KB1
 - 256 lipids/leaflet for 8 KB1
 - Explicit water
 - 300 K (150 300 ns) \rightarrow 350 K (30 ns)
- Two simulations for each system

August 25, 2010

Initial structure (4 KB1, water and ions not shown)

August 25, 2010

46

Conclusions

- Can reproduce the structure of KB1 bound to to a membrane suggested by experiment
- KB1 can form tetramers or higher
- KB1 shows a strong preference for binding to regions of positive curvature

August 25, 2010

56