

Constructing a phylogenetic tree from a MSA There are three main classes of methods: distance matrix methods (ClustalX, Phylip) parsimony (Phylip) maximum likelihood - too slow and complex for an introductory project Additionally: testing reliability of tree (bootstrapping) drawing and presenting trees (TreeView)

Distanc	e ma	trix	m	et	h	00	ds	
The sequences in the USA area	H	uman	0	8	8	8	8	
compared to each	Mouse		8	0	3	9	9	
other pairwise and	Rat		8	3	0	8	8	
it is determined	Dog		8	9	8	0	2	
are to each other	Cat		8	9	8	2	0	
" The pairwise								
distance matrix	Human GGTTATCCTACATGTATA							
of all the	Mouse ACTTGTCCAACGCGGACA							A
comparisons.	Rat	ACTCG	TCC	CAA	CG	TGC	CAC	A
	Dog	AGCTG	CCI	ГТА	CG	TAC	CAT	A
	Cat	AGCTG	TC:	ΓTΑ	.CG	TAC	CGT/	A

Prot	* ein parsimony algorithm, version 3.6	Phylip menu
Catt	two for this way	
Sett	Search for best tree?	Ves
T	Randomize input order of sequences?	No Use input order
0	Outgroup root?	No. use as outgroup species 1
т	Use Threshold parsimony?	No. use ordinary parsimony
C	Use which genetic code?	Universal
W	Sites weighted?	No
м	Analyze multiple data sets?	No
I	Input sequences interleaved?	Yes
0	Terminal type (IBM PC, ANSI, none)?	ANSI
1	Print out the data at start of run	No
2	Print indications of progress of run	Yes
3	Print out tree	Yes
4	Print out steps in each site	No
5	Print sequences at all nodes of tree	No
6	Write out trees onto tree file?	Yes
Are	these settings correct? (type V or the	letter for one to change)

- You can also construct a neighbor-joining tree using phylip programs.
- " The same (.phy) input file is used, but the program to run is protdist (dnadist). The outfile contains
- the distance matrix (intermediate step). This outfile becomes the infile to **neighbor**, which
- calculates the neighbour-joining tree.
- Phylip allows a number of options, such as the distance method used.

Treeview with bootstrap values In ClustalW, Tree menu, Output tree format options, change "Phylip bootstrap position" from BRANCH to NODE.

- " Bootstrap tree (filename.phb)
- Import filename.phb into Treeview, displaying as phylogram
- " Select display option "Show internal edge labels"
- " Ignore the "TRICHOTOMY" at the base of the tree, or edit filename.phb first, deleting it.

Examining the alignment for unusual regions

- Expect there to be "families" or clusters of sequences with similar patterns from close species. These are often visible in the clustal alignment.
- However, some sequences may appear part of one family in one region of the alignment, and part of another in another part.
- ** To test the difference between regions, prepare smaller alignments containing the separate regions, and construct the distance tree with bootstrap values for each in ClustalX

